CAMBIO DE TENSIÓN DE 220 KV A 400 KV DE LA LÍNEA ELÉCTRICA AÉREO-SUBTERRÁNEA SAN SEBASTIÁN DE LOS REYES-LOECHES Y CAMBIO DE CONDUCTOR DE LOECHES-PUENTE DE SAN FERNANDO

DOCUMENTO DE SÍNTESIS DEL ESTUDIO DE IMPACTO AMBIENTAL

Diciembre 2018
Cambio de tensión de 220 kV a 400 kV de la línea eléctrica aéreo-subterránea San Sebastián de los Reyes-Loeches y Cambio de conductor de Loeches-Puente de San Fernando

Documento de Síntesis del Estudio de Impacto Ambiental

ÍNDICE

1. INTRODUCCIÓN .. 1
 1.1. ANTECEDENTES .. 1
 1.2. JUSTIFICACIÓN DEL PROYECTO Y DEL ESTUDIO DE IMPACTO AMBIENTAL 2
 1.2.1. Justificación del proyecto .. 2
 1.2.2. Justificación del estudio de impacto ambiental .. 3
 1.3. OBJETIVOS ... 3

2. DESCRIPCIÓN DEL PROYECTO Y SUS ALTERNATIVAS 4
 2.1. DATOS DEL PROYECTO .. 4
 2.2. ALTERNATIVAS DE PROYECTO ... 4
 2.3. DESCRIPCIÓN DEL PROYECTO ... 7
 2.4. ACCIONES DEL PROYECTO ... 10
 2.5. SELECCIÓN DE LAS ALTERNATIVAS A VALORAR 11

3. ÁMBITO DE ESTUDIO .. 14

4. INVENTARIO AMBIENTAL .. 16
 4.1. MEDIO FÍSICO .. 16
 4.1.1. Geología y Geomorfología ... 16
 4.1.2. Hidrología .. 17
 4.1.3. Hidrogeología ... 18
 4.1.4. Edafología .. 18
 4.2. MEDIO BIÓTICO .. 18
 4.2.1. Vegetación y flora ... 18
 4.2.2. Hábitats de Interés Comunitario ... 21
 4.2.3. Fauna .. 21
 4.3. MEDIO SOCIOECONÓMICO ... 24
 4.3.1. Descripción demográfica ... 24
 4.3.2. Indicadores socioeconómicos ... 24
 4.4. PAISAJE .. 25
 4.4.1. Interpretación general del paisaje en el ámbito territorial 25
 4.4.2. Identificación de unidades y/o ámbitos paisajísticos 25
 4.4.3. Calidad visual del paisaje .. 26
 4.4.4. Fragilidad visual del paisaje ... 27
 4.4.5. Análisis de intervisibilidad .. 27
 4.5. MEDIO TERRITORIAL .. 27
 4.5.1. Planeamiento urbanístico .. 27
 4.5.2. Montes de Utilidad Pública .. 28
 4.5.3. Vías pecuarias ... 28
 4.5.4. Derechos mineros .. 29
 4.5.5. Infraestructuras, equipamientos y Espacios Productivos 29
 4.6. PATRIMONIO CULTURAL ... 30
5. VALORACIÓN DE LAS ALTERNATIVAS SEGÚN CRITERIOS TÉCNICOS Y AMBIENTALES

5.1. CONSIDERACIONES PREVIAS PARA LA VALORACIÓN DE LAS ALTERNATIVAS 31
5.2. VALORACIÓN AMBIENTAL DEL POTENCIAL IMPACTO DE LAS ALTERNATIVAS.... 33
 5.2.1. Metodología ... 33
 5.2.2. Identificación de los impactos potenciales .. 33
 5.2.3. Importancia y magnitud de los impactos de las alternativas 38
 5.2.4. Resultados de la valoración ambiental de las alternativas 38
 5.2.5. Discusión e interpretación de los resultados obtenidos en la valoración ambiental global 40
5.3. JUSTIFICACIÓN DE LA ALTERNATIVA SELECCIONADA 41

6. IMPACTO EN LA ALTERNATIVA SELECCIONADA .. 42

6.1. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LOS SUELOS Y EL RELIEVE 44
6.2. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LA HIDROLOGÍA 45
6.3. EFECTOS DE LA ALTERNATIVA SELECCIONADA EN LA CALIDAD ACÚSTICA 47
 6.3.1. Ruido en fase de construcción .. 47
 6.3.2. Ruido ocasionado por el funcionamiento de la línea eléctrica 47
6.4. EFECTOS DE LA ALTERNATIVA SELECCIONADA POR LA PRESENCIA DE CAMPOS ELECTROMAGNÉTICOS .. 48
 6.4.1. Valores de campo magnético y eléctrico máximos en la línea objeto del proyecto 49
 6.4.2. Análisis de las alternativas de las zonas urbanizadas sobrevoladas por la línea eléctrica 49
 6.4.3. Comparación entre los Niveles estimados y los niveles de referencia 51
 6.4.4. Caracterización del impacto por presencia de campos electromagnéticos 52
6.5. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LA VEGETACIÓN Y LA FLORA 52
 6.5.1. Síntesis del impacto en la vegetación y la flora ... 53
 6.5.2. Caracterización del impacto en la vegetación y la flora 54
6.6. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LOS HÁBITATS 54
 6.6.1. Efectos potenciales de la alternativa seleccionada en los HICs 54
 6.6.2. Síntesis de los efectos potenciales de la alternativa seleccionada en los HICs 54
 6.6.3. Caracterización del impacto en los HICs ... 56
6.7. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LA FAUNA 57
 6.7.1. PERTURBACIONES Y MOLESTIAS... 57
 6.7.2. MODIFICACIÓN DEL RIESGO DE COLISIÓN ... 58
 6.7.3. Caracterización del impacto en materia de fauna .. 59
6.8. EFECTOS DE LA ALTERNATIVA SELECCIONADA AL MEDIO SOCIOECONÓMICO 59
6.9. EFECTOS DE LA ALTERNATIVA SELECCIONADA AL PAISAJE 61
6.10. EFECTOS DE LA ALTERNATIVA SELECCIONADA A LA PLANIFICACIÓN TERRITORIAL Y URBANÍSTICA .. 61
6.11. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LOS ESPACIOS NATURALES PROTEGIDOS .. 63
 6.11.1. Efectos potenciales sobre los Espacios Naturales Protegidos 63
 6.11.2. Caracterización del impacto sobre los Espacios naturales protegidos 64
6.12. Efectos de la alternativa seleccionada sobre los usos pecuarios, forestales y mineros ... 64
6.13. Efectos de la alternativa seleccionada sobre el patrimonio cultural .. 64
6.14. Residuos generados por la alternativa seleccionada 64
6.15. Síntesis de los impactos potenciales de la alternativa seleccionada 65

7. MEDIDAS PREVENTIVAS Y CORRECTORAS .. 66

7.1. MEDIDAS PREVENTIVAS ... 66
7.1.1. Medidas generales de diseño ... 67
7.1.2. Medidas preventivas para la protección del suelo 67
7.1.3. Medidas preventivas para la protección de la flora y la vegetación 68
7.1.4. Medidas preventivas para la protección de la fauna 69
7.1.5. Medidas preventivas de los espacios protegidos y catalogados 70
7.1.6. Medidas preventivas para la protección de la atmósfera 70
7.1.7. Medidas preventivas para la protección de los cauces 71
7.1.8. Medidas preventivas para la protección de las vías pecuarias 72
7.1.9. Medidas preventivas para protección de los riesgos de incendios forestales 72
7.1.10. Medidas preventivas de paisaje ... 72

7.2. MEDIDAS CORRECTORAS .. 73
7.2.1. Medidas correctoras para los accesos y campas de trabajo............... 73
7.2.2. Medidas de revegetación ... 74
7.2.3. Medidas correctoras para el tratamiento de los taludes 75
7.2.4. Tratamiento de restos vegetales ... 76
7.2.5. Medidas correctoras para la colisión de avifauna con el cableado 76
7.2.6. Medidas correctoras del paisaje ... 77
7.2.7. Medidas correctoras de restitución ... 77

8. IDENTIFICACIÓN Y VALORACIÓN DE IMPACTOS RESIDUALES 77

9. PROGRAMA DE VIGILANCIA AMBIENTAL .. 79
9.1. CONTROL EN LA FASE DE OBRAS ... 79

10. CONCLUSIONES .. 80

11. EQUIPO REDACTOR .. 81

MAPA DE SÍNTESIS AMBIENTAL
1. INTRODUCCIÓN

El presente Documento de Síntesis del Estudio de Impacto Ambiental del proyecto Cambio de tensión de 220 kV a 400 kV de la línea eléctrica aéreo-subterránea San Sebastián de los Reyes-Loeches y Cambio de conductor de Loeches-Puente de San Fernando es un resumen no técnico del citado estudio escrito en términos fácilmente comprensibles.

En esta introducción abordamos, en primer lugar, los antecedentes al proyecto enfocado principalmente a los hitos principales de su procedimiento ambiental. En el capítulo siguiente se desarrolla la descripción del proyecto y sus alternativas. Se justifican las alternativas consideradas motivadas para resolver el cumplimiento de las normativas, principalmente para cumplir las distancias respecto del suelo derivado del cambio de tensión. Es importante destacar que el proyecto integra una serie de condicionantes ambientales considerados previamente que consiguen minimizar significativamente el impacto ambiental ya desde la fase de diseño.

Tras la descripción, se incluyen el inventario ambiental y a continuación, la valoración de las alternativas. Destacar que esta valoración considera los aspectos ambientales y técnicos para la decisión de la alternativa seleccionada. Una vez identificada la alternativa seleccionada, se desarrolla un apartado de impacto detallado de la alternativa seleccionada.

Finalmente, se incluye el apartado de medidas protectoras y correctoras y la valoración de los impactos residuales tras la aplicación de dichas medidas, así como el programa de vigilancia ambiental.

1.1. ANTECEDENTES

El proyecto objeto del presente documento engloba dos proyectos que llevaron inicialmente tramitación ambiental independiente.

El 21 de febrero de 2018, la Dirección General de Calidad y Evaluación Ambiental y Medio Natural del MAPAMA resolvió que es necesario el sometimiento al procedimiento de evaluación ambiental ordinaria del proyecto Cambio de tensión de 220 kV a 400 kV de la línea eléctrica aéreo-subterránea San Sebastián de los Reyes-Loeches, ya que se prevén efectos adversos significativos sobre el medio ambiente. Esta Resolución se hizo pública en el BOE de 7 de marzo de 2018 (íntegra en Anexo II del Estudio de Impacto Ambiental).

En Resolución de 22 de junio de 2018 del Director General del Medio Ambiente y Sostenibilidad de la Consejería de Medio Ambiente y Ordenación del Territorio de la Comunidad de Madrid, se acordó hacer público el Informe de Impacto Ambiental del proyecto de “Cambio de conductor y sustitución del apoyo número 16, de la línea 220 KV, Loeches-Puente de San Fernando”, en los términos municipales de Loeches, Mejorada del Campo y San Fernando de Henares, promovido por REE. Esta Resolución se hizo pública en BOCM de 25 de julio de 2018 (íntegra en Anexo II del Estudio de Impacto Ambiental). En dicha Resolución se resolvió que:

- es necesario que el proyecto examinado se someta al procedimiento de Evaluación de Impacto Ambiental Ordinaria al ser previsible que el proyecto tenga efectos ambientales significativos sobre los valores ambientales del entorno de la actuación.
- a fin de evitar fraccionamiento de proyectos y duplicidad de tramitaciones de evaluación de impacto ambiental, considerando que el objetivo final es el cambio de tensión de 220 a 400 kV, el proyecto “Cambio de conductor y sustitución del apoyo Nº 16 de la línea 220...
kV, Loeches-Puente de San Fernando” debe incluirse en el proyecto “Cambio de tensión de 220 kV a 400 kV de la LE San Sebastián de los Reyes – Loeches” para la tramitación del procedimiento de evaluación de impacto ambiental ordinaria por el órgano ambiental de competencia estatal, motivo por el que Red Eléctrica ha decidido fusionar ambos expedientes en un único proyecto a tramitar.

1.2. JUSTIFICACIÓN DEL PROYECTO Y DEL ESTUDIO DE IMPACTO AMBIENTAL

En este apartado se expone la justificación del proyecto y posteriormente la justificación del procedimiento ambiental que le aplica.

1.2.1. JUSTIFICACIÓN DEL PROYECTO

El cambio de tensión de la LE 220 kV San Sebastián - Loeches tiene como objetivo la mejora en la calidad de suministros de energía eléctrica en la región, siendo REE responsable del desarrollo y mantenimiento de la Red de Transporte.

Concretamente la motivación de la actuación va dirigida a su fiabilidad, es decir, garantizar la seguridad del sistema en su conjunto.

La actuación correspondiente al presente documento aparece en la Planificación Energética 2015-2020, denominada paso a 400 kV del actual eje SS Reyes – P.S Fernando – Loeches 220 kV (eje actualmente aislado a 400 kV) y se trata de una actuación de carácter estructural ya que contribuirá al buen funcionamiento del sistema eléctrico en su conjunto a nivel zonal.

En la Comunidad de Madrid se están observando subestaciones de la Red de Transporte con elevada corriente de cortocircuito, dato básico para la caracterización de una red, ya que se relaciona directamente con su comportamiento ante maniobras de equipos, incidentes, estabilidad del sistema, calidad de onda, etc. Por tanto, afecta directamente a la calidad y seguridad de suministro.

Para un buen comportamiento del Sistema, entre otras cosas, se plantea que en aquellas zonas donde se prevea la superación de los límites anteriores, se planteará la sustitución de los equipos afectados (cuando la capacidad de los equipos sea inferior a la establecida en PO) o soluciones de desarrollo u operación que reduzcan las corrientes de cortocircuito máximas en la zona.

En este sentido, la planificación de la red de transporte de energía eléctrica 2015-2020, prevé en su actuación TM-3: Reducción de la Icc en la red de 220 kV y 400 kV, entre otras, el paso a 400 kV del actual eje SS Reyes – P.S Fernando – Loeches 220 kV (eje actualmente aislado a 400 kV).

En concreto de esta actuación en la planificación se dice lo siguiente:

“...Paso a 400 kV de la actual línea de 220 kV (que cuenta con aislamiento de 400 kV), SS Reyes- P.S. Fernando-Loeches. La actual subestación P.S. Fernando 220 kV pasaría a alimentarse mediante un doble circuito en cable desde la futura subestación de S. Fernando 220 kV...”

Atendiendo a todo lo anterior, la justificación de este proyecto se fundamenta en lo establecido en la Planificación de la red de transporte de energía eléctrica 2015-2020, en relación con garantizar la seguridad del sistema en su conjunto, ya que la actuación forma parte de “Actuación TM3-3: Reducción de la Icc en la red de 220 kV y 400 kV de Madrid” que busca tal fin.
Por otro lado, como parte de su plan anual de mantenimiento de Líneas de Alta Tensión (en adelante, LAT), está contemplado el cambio de conductor de la línea existente a 220 kV Loeches-Puente San Fernando, debido a que bien se ha detectado un mal estado general en los mismos, bien por obsolescencia tecnológica.

1.2.2. JUSTIFICACIÓN DEL ESTUDIO DE IMPACTO AMBIENTAL

A nivel de procedimiento a tramitar es de aplicación la Ley 21/2013, de 9 de diciembre, de evaluación ambiental que incluye en su Anexo I Proyectos sometidos a la evaluación ambiental ordinaria regulada en el título II, capítulo II, sección 1.ª:

Grupo 3 Industria energética

g) Construcción de líneas de transmisión de energía eléctrica con un voltaje igual o superior a 220 kV y una longitud superior a 15 km, salvo que discurran íntegramente en subterráneo por suelo urbanizado, así como sus subestaciones asociadas.

El proyecto que se evalúa no se encuentra dentro del mencionado epígrafe debido a que consiste en un cambio de tensión y cambio de conductor de una línea eléctrica existente principalmente mediante la adecuación al cumplimiento normativo realizando el necesario recrecido de algunos de sus apoyos.

Sin embargo, en virtud del artículo 7.1, apartado c)1 de la citada Ley de evaluación ambiental, y de acuerdo con la evaluación de impacto ambiental practicada según la Sección 2ª del Capítulo II del Título 11, y el análisis realizado con los criterios del Anexo III, se determinó (como se recoge en el apartado 1.1. Antecedentes) que es previsible que el proyecto “Cambio de tensión de 220 kV a 400 kV de la línea eléctrica aéreo-subterránea San Sebastián de los Reyes-Loeches” podía producir impactos adversos significativos, por lo que se consideró necesaria la tramitación prevista en la Sección 1ª del Capítulo II del Título II de dicha Ley: Procedimiento de evaluación de impacto ambiental ordinaria para la formulación de la declaración de impacto ambiental.

Adicionalmente, se ha agregado el proyecto denominado “Cambio de conductor y sustitución del apoyo Nº 16 de la línea 220 kV Loeches-Puente de San Fernando”, ya que en la correspondiente resolución (ver 1.1. Antecedentes) se decidió someter también al procedimiento de Evaluación de Impacto Ambiental Ordinaria, al ser previsible que el proyecto tenga efectos ambientales significativos sobre los valores ambientales del entorno de la actuación y para evitar fraccionamiento de proyectos y duplicidad de tramitaciones de evaluación de impacto ambiental, considerando que el objetivo último del cambio de conductor es permitir el cambio de tensión de 220 a 400 kV.

1.3. OBJETIVOS

El objeto del estudio de impacto ambiental es dar cumplimiento al artículo 35 de la Ley de evaluación ambiental y presentar un estudio de impacto ambiental con los siguientes contenidos legalmente establecidos:

a) Descripción general del proyecto y previsiones en el tiempo sobre la utilización del suelo y de otros recursos naturales. Estimación de los tipos y cantidades de residuos vertidos y emisiones de materia o energía resultantes.
b) Exposición de las principales alternativas estudiadas, incluida la alternativa cero, o de no realización del proyecto, y una justificación de las principales razones de la solución adoptada, teniendo en cuenta los efectos ambientales.

c) Evaluación y, si procede, cuantificación de los efectos previsibles directos o indirectos, acumulativos y sinérgicos del proyecto sobre la población, la salud humana, la flora, la fauna, la biodiversidad, la geodiversidad, el suelo, el subsuelo, el aire, el agua, los factores climáticos, el cambio climático, el paisaje, los bienes materiales, incluido el patrimonio cultural, y la interacción entre todos los factores mencionados, durante las fases de ejecución, explotación y en su caso durante la demolición o abandono del proyecto.

Cuando el proyecto pueda afectar directa o indirectamente a los espacios Red Natura 2000 se incluirá un apartado específico para la evaluación de sus repercusiones en el lugar, teniendo en cuenta los objetivos de conservación del espacio.

d) Medidas que permitan prevenir, corregir y, en su caso, compensar los efectos adversos sobre el medio ambiente.

e) Programa de vigilancia ambiental.

f) Resumen del estudio y conclusiones en términos fácilmente comprensibles.

2. DESCRIPCIÓN DEL PROYECTO Y SUS ALTERNATIVAS

En el presente apartado se incluye una descripción del proyecto de Cambio de Tensión de la línea eléctrica L/220 a 400 kV San Sebastián de los Reyes- Loeches y Cambio de Conductor del tramo L220 kV Puente de San Fernando- Loeches con el objeto identificar y describir aquellas actuaciones o características que pudieran tener algún tipo de efecto, bien sea negativo o positivo, sobre el medio ambiente. Además, se realiza un análisis previo de las alternativas globales al proyecto de cambio de tensión y conductor, y un análisis de las alternativas específicas de ejecución de las actuaciones que engloban el proyecto.

2.1. DATOS DEL PROYECTO

La línea eléctrica resultante del cambio de tensión a 400 kV de los dos circuitos actualmente en servicio a 220 kV San Sebastián de los Reyes- Puente de San Fernando y Puente de San Fernando- Loeches y cambio de conductor del último tramo se denominará LE a 400 kV San Sebastián de Los Reyes - Loeches.

2.2. ALTERNATIVAS DE PROYECTO

Como preámbulo a la definición de alternativas para el proyecto, resulta conveniente enmarcar la actuación en el contexto de la planificación energética de transporte e identificar su relación con planes de rango superior. La actuación correspondiente al presente documento aparece en la Planificación Energética 2015-2020 del Ministerio de Industria, Energía y Turismo, a su vez aprobado mediante Evaluación Ambiental Estratégica por la que se resuelve acometer el proyecto denominado “paso a 400 kV del actual eje SS Reyes – P.S Fernando – Loeches 220 kV (eje actualmente aislado a 400 kV) como la mejor alternativa ambiental.
En este contexto el proyecto de cambio de tensión tiene carácter estructural ya que contribuirá al buen funcionamiento del sistema eléctrico en su conjunto a nivel zonal, y su motivación va dirigida a garantizar la seguridad del sistema en su conjunto.

El cambio de conductor de la L220 kV Puente de San Fernando- Loeches se engloba en el marco de mantenimiento de Líneas de Alta Tensión. Red Eléctrica de España, en el marco de la Ley 24/2013 de 26 diciembre, del sector Eléctrico, debe garantizar, como gestor de red de transporte y transportista único, un correcto mantenimiento de las líneas eléctricas existentes de su propiedad. Como parte de su plan anual de mantenimiento de Líneas de Alta Tensión está contemplado el proyecto para poder garantizar un buen funcionamiento de la red.

En el presente capítulo se analizan las diferentes alternativas globales consideradas para alcanzar el objetivo de la actuación, esto es, mejorar la calidad del suministro de energía en la región. Las alternativas técnicas y ambientales de las actuaciones propias del Cambio de tensión se analizarán en el capítulo 1.5 Selección de las alternativas a valorar.

A este respecto se analizan las tres alternativas que se consideran más plausibles teniendo en cuenta la tipología del proyecto:

- No ejecución del proyecto (alternativa 0).
- Construcción de una nueva línea eléctrica de nuevo trazado.
- Cambio de tensión de 220 kV a 400 kV de la LE Sebastián de los Reyes – Loeches y cambio de conductor de la L220 kV Puente de San Fernando- Loeches.

Todos ellas se plantean como posibles actuaciones a nivel técnico y ambiental y presentan ventajas y desventajas, las cuales se describen a continuación.

ALTERNATIVA 0

Determina la no ejecución de ninguna actuación y el incumplimiento de la “Planificación Energética, y el Plan de Desarrollo de la Red de Transporte de Energía Eléctrica 2015-2020”.

La alternativa 0 conlleva la no existencia de impactos negativos sobre el medio ambiente, puesto que no existen actuaciones de proyecto que las puedan generar. Sin embargo, la necesidad identificada en la “Planificación Energética. Plan de Desarrollo de la Red de Transporte de Energía Eléctrica 2015-2020” en la red de transporte de energía en este área, no quedaría cubierta, de tal modo que la región seguiría manteniendo los problemas actuales en la calidad del suministro. Es decir, se perdería el valor añadido que generaría el proyecto en la socioeconomía de la zona.

Por otro lado, según el plan anual de mantenimiento de Líneas de Alta Tensión de REE la no ejecución del proyecto de cambio de conductor puede poner en riesgo el buen funcionamiento actual de la línea.

Concretando lo anterior, las principales características de la alternativa 0 son:

- **Ventajas:**
 - Coste económico cero, se trata de la alternativa más económica
 - No se generan efectos ambientales directos negativos
No se requiere el uso de materiales ni de mano de obra, puesto que se opta por no actuar.

Desventajas
- No representa ningún beneficio social.
- Incumplimiento de la Ley 24/2013 y del plan anual de mantenimiento de Líneas de Alta Tensión
- La situación en cuanto a la gestión del sistema eléctrico de transporte no cambia, continúa con el modelo actual y por tanto con los mismos problemas que motivan la actuación propuesta.

CONSTRUCCIÓN DE UNA NUEVA LÍNEA ELÉCTRICA DE NUEVO TRAZADO.

La necesidad de mejora del suministro eléctrico puede quedar satisfecha a través de la construcción de una nueva línea de transporte a 400 kV que conecte la SE San Sebastián de los Reyes con la de Loeches u otras SE de la zona mallada que se considerasen.

Esta alternativa, si bien cumple con el objetivo de satisfacer las necesidades de abastecimiento, presenta desventajas en las siguientes cuestiones:

- Sobrecoste económico.
- Sin la necesidad de llevar a cabo una evaluación pormenorizada de los impactos que generaría la construcción de una nueva LE, es obvio que su magnitud sería muy superior a la propuesta de mejora de la línea actual, tanto por la longitud afectada, el nuevo fraccionamiento que se generaría territorio, el impacto paisajístico, el consumo de recursos, las emisiones a la atmósfera en fase de construcción o la generación de residuos, entre otros.

En este sentido y puesto que se dispone de viabilidad técnica para llevar a cabo el cambio de tensión de la L/220 kV San Sebastián de los Reyes-Loeches y el cambio de conductor de la L/220 kV Puente de San Fernando-Loeches, se ha descartado la posibilidad de un nuevo trazado mucho más costoso, tanto desde una perspectiva ambiental como económica.

ALTERNATIVA CAMBIO DE TENSIÓN DE LA L/220 KV SAN SEBASTIÁN DE LOS REYES-LOECHES Y CAMBIO DE CONDUCTOR DE LA L/220 KV PUENTE DE SAN FERNANDO-LOECHES.

En la actualidad, la L/220 kV San Sebastián de los Reyes – Loeches se encuentra preparada desde el punto de vista técnico, para poder transportar energía con una tensión de 400 kV.

Esta alternativa plantea el cambio de tensión de 220 kV a 400 kV de la actual L/220 kV San Sebastián de los Reyes-Loeches y cambio de conductor L/220 kV Puente de San Fernando-Loeches. La alternativa de cambio de tensión supone la elevación de la temperatura de los conductores, su dilatación y por lo tanto su aumento de longitud que genera un aumento de la flecha del vano y el incumplimiento de las distancias de seguridad en algunos puntos. Además de la necesidad de aplicar una mejora o adecuación de algunos apoyos a esta nueva tensión y la construcción de nuevos apoyos en las conexiones de la SE de San Sebastián de los Reyes y en la SE de Loeches, generando mejores localizaciones de los apoyos, que la LE existente, desde un punto de vista de la salud y ambiental. Los trabajos del cambio de conductor de la L/220 kV Puente de San Fernando-Loeches consistirán en la sustitución del conductor actual.
Teniendo en cuenta lo anterior, y sin necesidad de un análisis cuantitativo en profundidad, es obvio que esta es la alternativa óptima porque cumple con el objetivo de satisfacer la demanda eléctrica en combinación con un impacto significativamente inferior a la construcción de una nueva infraestructura.

Por último y, dado que se trata de la alternativa seleccionada para cubrir esta demanda en la “Planificación Energética. Plan de Desarrollo de la Red de Transporte de Energía Eléctrica 2015-2020” (tal y como se ha indicado al inicio del capítulo) y para cumplir Plan Anual de Mantenimiento de Líneas de Alta Tensión se considera que es la alternativa óptima dese el punto de vista técnico y ambiental.

En el capítulo de Selección de las alternativas a valorar se realiza una descripción de las alternativas que serán objeto de una valoración técnica y ambiental a lo largo del Estudio de Impacto Ambiental cuyo resultado determinará la alternativa de menor impacto que será la seleccionada para la ejecución de la actuación.

Es importante destacar que el análisis de alternativas se aplica sobre los componentes del proyecto que tienen posibilidad técnica de modificación ya que existen actuaciones del proyecto que desde el punto de vista técnico sólo pueden acometerse de una única manera. Posteriormente viene la explicación detallada.

2.3. DESCRIPCIÓN DEL PROYECTO

El cambio de tensión a 400 kV lleva asociado realizar actuaciones para solventar el incumplimiento de distancias reglamentarias de los conductores, elevando los conductores para volver a cumplir con las distancias de seguridad definidas por el RLEAT en su ITC-LAT 07, nuevas conexiones a la SE de San Sebastián de los Reyes y a la SE de Loeches, y la adecuación o mejora de algunos de los apoyos existentes. El cambio de conductor de la L/220 KV Puente de San Fernando-Loeches consiste en la sustitución del conductor actual.

La actuación se resume en los siguientes parámetros:

- Longitud total de la LE: 26,3 km aéreos + 2,2 km subterráneo.
- Longitud de los vanos/apoyos con actuaciones: 18,32 Km (69,65% de su longitud total).
- Longitud acumulada de los tramos de estudio: 26,3 km (100% de su longitud).
- Número de apoyos de la LE completa existente: 82.
- Número de apoyos de nueva construcción: 5
- Número de apoyos a desmantelar: 7 apoyos
- Número de vanos con incumplimiento (actuación de recrecer o eliminar el elemento que incumple, rebajar el terreno): 18 vanos
- Número de apoyos con actuaciones de mejora (colocación de contrapesos, poleas, grapas) y/o en los que se realiza el cambio de conductor: 34 apoyos
- Número de apoyos Paso-Aéreo-Subterráneo con actuaciones por cambio de tensión (instalación de nuevos terminales): 2 apoyos
- El proyecto sólo conlleva la modificación del trazado de la LE en la salida de la SE de San Sebastián de los Reyes, y en la entrada a la SE de Loeches, evitando HIC* 1520 y el vuelo sobre el colegio Monfort. El recrecido de los apoyos no conlleva modificar el trazado de la LE.

El proyecto engloba un total de 6 actuaciones diferentes que a continuación se citan, con casuísticas específicas en cada una de ellas. Estas actuaciones se han clasificado por su magnitud
y sus acciones, para una mayor comprensión del proyecto y una mejor trazabilidad de los efectos que pueden generar sobre el medio ambiente en las siguientes categorías:

- Actuaciones con maquinaria estándar (pesada).
- Actuaciones con maquinaria ligera.

TIPO 1. Actuaciones con maquinaria pesada

Se engloban en este grupo las actuaciones que se van a ejecutar con maquinaria estándar para este tipo de trabajos (grúas, plumas, camiones, camiones tráiler, camiones con pluma, hormigoneras, perforadoras y compresores), y que necesitan caminos de acceso con ancho de 3 m en línea recta y 3,5 m en curvas.

Dentro de este grupo se van a generar tres subgrupos de actuaciones (a, b y c) según su plataforma necesaria de actuación (campa de trabajo), potenciales efectos a generar sobre el medio ambiente y sus acciones de proyecto.

a) Apoyos de nueva construcción

En este grupo se incluyen los apoyos de nueva construcción que necesitan una campa de trabajo de 20 x 15 m (300 m2), y la adaptación a cambio de tensión del apoyo 51 y los apoyos de Paso Aéreo a Subterráneo (PAS) los cuales necesitan una campa de trabajo de 450 m2.

- **Apoyos de nueva construcción**

 Apoyos T-0A, T-0B, T-0, T-77 Y T78 (5).

 Estos apoyos y sus accesos se proyectan en terrenos agrícolas, o eriales.

 Las acciones específicas de esta actuación son:

 - Cimentaciones
 - Armado del nuevo apoyo
 - Izado del nuevo apoyo

- **Adecuación de apoyo T-51:**

 En este apoyo se deberá modificar el armado del apoyo para la desconexión del vano con la SE Puente San Fernando y para el paso de puentes en 400kV.

 Las acciones específicas de esta actuación son:

 - Modificación de la geometría

- **Adecuación de apoyo P.A.S. (Paso aéreo subterráneo):**

 Apoyos T-PAS42 y T- PAS49

 Los apoyos nº 42 y nº 49 existentes para realizar el Paso de Aéreo a Subterráneo (PAS) disponen de botellas terminales y autoválvulas de 220kV que resulta necesario sustituir por otros de 400kV para el cambio de tensión. Los nuevos accesorios de 400kV son de mayores dimensiones que los existentes de 220kV resultando necesario sustituir las bandejas metálicas por otras que permitan instalar los nuevos accesorios de 400kV.
cumpliendo con las mínimas distancias eléctricas a masa. Se necesitará una campo de trabajo de 450 m² aproximadamente que rodeara el apoyo.

Las acciones específicas de esta actuación son:

- Modificación de la geometría para la transición aérea subterránea
- Desmontaje accesorios existentes de 220 kV y de las bandejas
- Montaje de las nuevas bandejas y de los nuevos accesorios de 400 kV

b) Grupo que contiene los apoyos a recrecer y los apoyos a desmantelar que necesitan una plataforma de 20 x 15 m (300 m²). En ambos casos son infraestructuras existentes.

- **Apoyos a recrecer**

Los apoyos a recrecer son los resultantes de los 18 vanos con incumplimiento.

A estos apoyos mayoritariamente se accede por la red de accesos existentes utilizada por mantenimiento los cuales se deberán o no de adecuar para esta actuación. Las acciones específicas de esta actuación son:

- Refuerzo de cimentaciones (se hacen catas previas para ver su necesidad)
- Armado del recrecido
- Izado del recrecido

- **Desmantelamiento de apoyos**

Las acciones específicas de esta actuación son:

- Desmontaje de los apoyos
- Eliminar materiales

c) Por su temporalidad, y el espacio de trabajo utilizado se disocia del resto de actuaciones la utilización de máquinas de tiro y freno.

- **Máquinas de tiro y freno para CC:**

Se localizarán en las proximidades de la SE Puente de San Fernando, del apoyo T-54, del apoyo T-71 y de la SE Loeches.

La acción específica es:

- Colocación de máquinas de tiro y freno.

TIPO 2. Actuaciones con maquinaria ligera

Se engloban en este grupo las actuaciones que se ejecutan con maquinaria ligera (vehículos 4x4 y retro-pala de pequeñas dimensiones), que pueden necesitar una zona de trabajo de 5 m x 5 m que únicamente se transitará y no se adecuará en ningún caso, y caminos de acceso con ancho de 2,5 m en línea recta y 3 m en curvas.

- **Instalación de grapas y/o poleas y/o cadenas y/o contrapesos y/o cambio de conductor**

Las acciones específicas son:

- Acciones de colocación de grapas y/o poleas y/o cadenas y/o contrapesos
- Sustitución o cambio del conductor

- **Rebaje del terreno**

Se ejecutarán los rebajes resultantes del análisis de las alternativas a estudiar para solventar los 18 incumplimientos de distancias de seguridad. Los rebajes se realizarán con retro-pala y con medios manuales.

La acción específica es:

- Rebajar el terreno.

A continuación se expone una tabla resumen de las actuaciones según sus efectos. Esta nomenclatura será la utilizada a lo largo del Estudio de Impacto Ambiental para la valoración de los impactos del proyecto.

<table>
<thead>
<tr>
<th>Clasificación de las actuaciones según sus efectos</th>
<th>Actuaciones del proyecto</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPO 1</td>
<td></td>
</tr>
<tr>
<td>a Nueva construcción</td>
<td></td>
</tr>
<tr>
<td>Recreído</td>
<td></td>
</tr>
<tr>
<td>Desmantelamiento</td>
<td></td>
</tr>
<tr>
<td>b Adequación al cambio de tensión de apoyos PAS</td>
<td></td>
</tr>
<tr>
<td>Modificación de la geometría</td>
<td></td>
</tr>
<tr>
<td>c Colocación de máquinas de tiro y freno</td>
<td></td>
</tr>
<tr>
<td>TIPO 2</td>
<td></td>
</tr>
<tr>
<td>Instalación de grapas de rondas y/o poleas y/o cadenas y/o contrapesos y/o cambio de conductor</td>
<td></td>
</tr>
<tr>
<td>Rebaje del terreno</td>
<td></td>
</tr>
</tbody>
</table>

2.4. ACCIONES DEL PROYECTO

Las acciones que se precisan son las establecidas en las Especificaciones Técnicas de REE (Código ET091) sobre el recrecido de apoyos para las líneas eléctricas de alta tensión, más las acciones específicas del proyecto: acciones de renovación y mejora, apoyos de nuevos construcción, desmantelamiento de apoyos, adecuación de PAS y cambio de conductor.

Se describen a continuación las acciones englobadas en su conjunto:

- Obtención de permisos y apertura de caminos de acceso
- Descarga de la Línea Eléctrica.
- Poda y Tala de arbolado
- Cimentaciones o refuerzo de cimentaciones
• Acopio de material de los apoyos
• Armado del nuevo apoyo, del recrecido o modificación de la geometría del armado
• Izado del nuevo apoyo o del recrecido
• Acciones sobre los elementos que incumplen distancias reglamentarias.
• Montaje de las nuevas bandejas y de los nuevos accesorios de 400 kV (apoyos PAS)
• Acciones de colocación de grapas y/o poleas y/o contrapesos y/o cadenas y/o sustitución del conductor
• Colocación de máquinas de tiro y freno. Tensado y regulado de cables
• Instalación de dispositivos salvapájaros
• Desmontaje de apoyos.
• Eliminación de materiales y rehabilitación

En el proyecto que nos ocupa, se transitará por estas tipologías de accesos:

<table>
<thead>
<tr>
<th>Actuación</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camino en buen estado</td>
<td>Camino permanente ya construido, de distinta titularidad, cuya capacidad es óptima para soportar el tráfico exigido en la actuación del apoyo al que se adscribe. Pueden presentar firmes bituminosos, bases de zahorra o firme terrizo y no se requieren actuaciones de acondicionamiento de los mismos.</td>
</tr>
<tr>
<td>Campo a través</td>
<td>Trocha para la aproximación final al emplazamiento del apoyo sobre cultivos o prados, sobre el que REE ha adquirido un derecho de paso a través de una servidumbre. Esta servidumbre es permanente, pero el tramo puede ser restaurado para su cultivo una vez finalizada la obra, pudiéndose volver a emplear siempre que sea necesario.</td>
</tr>
<tr>
<td>Tramo con actuación</td>
<td>Corresponde al caso concreto de tener la necesidad de actuar sobre cualquier tipo de construcción (muro, pozo, verja, acequias, conducciones subterráneas, etc.) o sobre el terreno para darle funcionalidad.</td>
</tr>
</tbody>
</table>

2.5. SELECCIÓN DE LAS ALTERNATIVAS A VALORAR

En el presente capítulo se explica el proceso metodológico que se ha utilizado para identificar las alternativas que van a ser objeto de valoración en el capítulo 5 del Estudio de Impacto Ambiental.

El análisis de alternativas se va a realizar en los vanos con incumplimiento de distancias reglamentarias cuyas alternativas de actuación pueden ser:

1) **Alternativa A**: Recrecer el apoyo de menor numeración
2) **Alternativa B**: Actuar sobre el elemento que incumple distancias reglamentarias.
3) **Alternativa C**: Recrecer el apoyo de mayor numeración.

Se añade imagen de un ejemplo tipo de vano con incumplimiento reglamentario con las 3 posibles alternativas a estudiar:
Para el resto de las actuaciones del proyecto: nueva construcción, desmantelamiento, actuaciones de mantenimiento y mejora, y las adecuaciones de los apoyos PAS, se han aplicado medidas en fase de diseño para la selección de la mejor alternativa de acceso y localización.

Esta metodología se explica en el apartado de Medidas preventivas de Diseño. Se destaca de este diseño el cumplimiento de los requerimientos establecidos en la resolución de referencia seleccionando localizaciones para los apoyos de nueva construcción fuera de manchas de vegetación de hábitats de interés comunitario.

Respecto al estudio de alternativas A, B y C, la viabilidad técnica de una actuación, puede condicionar la posibilidad de que sólo exista una alternativa técnica como la alternativa elegida. En estos casos, sólo se podrá actuar de una única manera.

A continuación, se desarrolla cómo se llega a la selección de vanos con diferentes alternativas que serán objeto de valoración técnica y ambiental.

Identificación de los vanos que no cumplen la normativa y selección de vanos con las diferentes alternativas a valorar

En primer lugar, se identifican la totalidad de vanos (18) con incumplimiento de distancias regulamentarias en el proyecto:

A continuación, se definen los criterios o requisitos, que invalidan por motivos técnicos estudiar más de una alternativa en un determinado vano.

Requisito de incumplimiento 1: cuando sólo el recrecido de uno de los apoyos permite el cumplimiento de distancias impuestas por el cruce con otras infraestructuras, en concreto en este proyecto, otras líneas eléctricas, ferrocarriles o carreteras, incluidos aquellos aspectos relacionados con su señalización. No considerando como alternativa técnicamente viable la eliminación de esos elementos.

Requisito de incumplimiento 2: Casos en los que es necesario el recrecido de ambos apoyos de un vano para resolver el correspondiente incumplimiento.

Requisito de incumplimiento 3: Actuaciones técnicamente inviables como la imposibilidad de recrecer apoyos PAS del proyecto, ejecutar rebajes del terreno en zonas nivel freático próximo o eliminar/modificar otras líneas eléctricas, teléfonicas, ferrocarriles o carreteras.

Esta información nos permite identificar las actuaciones dentro de vanos que cumplen alguno de estos requisitos y por tanto no podrán ser objeto del estudio de alternativas (alternativas descartadas):

- Los rebajes del terreno de los vanos T-8/T-9, T-9/T-10 y T-65/T-66 al localizarse en la llanura de inundación del río Jarama y del río Henares, respectivamente (requisito de incumplimiento 3).
- Las alternativas de recrecido de los apoyos T-54 y T-57 al tener que recrecer ambos apoyos en los vanos T-55/T-56 y T-58/T-59 para poder solventar los incumplimientos (requisito de incumplimiento 2), es decir por tener que **recrecer los apoyos T-55, T-56, T58 y T-59** para solventar el incumplimiento de los vanos.
- La alternativa de recrecer el apoyo T-PAS49 por ser inviable técnicamente (requisito de incumplimiento 3). Siendo la única alternativa para solventar el incumplimiento **recrecer el apoyo T-50**.
- La alternativa de recrecer el apoyo T-61 por tener en un plano superior una línea eléctrica de alta tensión (requisito de incumplimiento 3).

Estos vanos, pese a tener una única alternativa viable de ejecución, serán objeto de análisis y evaluación de sus efectos sobre el medio y formarán parte del diseño de las medidas de protección y corrección que minimicen o eliminen el conjunto de los impactos del proyecto.

Por tanto, restando estos vanos a la identificación total de los vanos con incumplimiento, queda **la selección definitiva de vanos con incumplimiento y con diferentes alternativas a valorar ambiental y técnicamente**.

Tabla 2. Selección de vanos con incumplimiento y las respectivas alternativas.

<table>
<thead>
<tr>
<th>Vano con incumplimiento</th>
<th>Motivo de incumplimiento</th>
<th>Alternativas técnicas viables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A (recrecer)</td>
</tr>
<tr>
<td>T-4/T-5</td>
<td>Distancia a Línea eléctrica 20kV</td>
<td>T-4</td>
</tr>
<tr>
<td>T-5/T-6</td>
<td>Distancia a Línea telefónica</td>
<td>T-5</td>
</tr>
<tr>
<td>T-8/T-9</td>
<td>Distancia a terreno</td>
<td>T-8</td>
</tr>
<tr>
<td>T-9/T-10</td>
<td>Distancia a terreno</td>
<td>T-9</td>
</tr>
<tr>
<td>T-11/T-12</td>
<td>Distancia a Línea eléctrica 20 y 220kV</td>
<td>T-11</td>
</tr>
</tbody>
</table>
Serán objeto de análisis de alternativas un total de 13 vanos con incumplimiento de distancias reglamentarias.

Las alternativas de estos vanos serán objeto de valoración técnica y ambiental en el Capítulo 5 del Estudio de Impacto Ambiental: Valoración de alternativas bajo criterios técnicos y ambientales

3. ÁMBITO DE ESTUDIO

El ámbito de estudio se define como aquella superficie representativa en torno al proyecto “Cambio de tensión de 220 kV a 400 kV de la LE aéreo-subterránea San Sebastián de los Reyes-Loeches y Cambio de Conductor de la LE Loeches-Puente de San Fernando”, cuyo estudio y posterior análisis, va a permitir llevar a cabo una adecuada evaluación de sus efectos sobre el medio ambiente (impactos).

Como ámbito de estudio general se ha establecido una banda de 2 km a ambos lados de la línea eléctrica, en cuya superficie resultante (127 km²) se engloban el total de los apoyos, vanos y accesos sobre los que se actúa. La línea eléctrica, los apoyos y los accesos, transcurren a lo largo de 5 municipios que, siguiendo el orden de localización norte-sur, serían San Sebastián de los Reyes, Paracuellos del Jarama, San Fernando de Henares, Mejorada del Campo y Loeches. Además de éstos, el ámbito de estudio incluye otros municipios, de los cuales no se hará un estudio exhaustivo de las variables analizadas debido a que no se ejercerá efecto alguno sobre ellos: Torrejón de Ardoz, Cobeña, Alcalá de Henares, Alcobendas, Madrid y Coslada.

Tal y como se muestra en la siguiente imagen, el ámbito discurre en la mayoría de su trayecto por el valle del río Jarama, y del río Henares, en su tramo final. Las infraestructuras viales más importantes que se encuentran en el entorno de la línea eléctrica son las carreteras autonómicas M-50, M-111 y M-203 y las autovías estatales A-1 y A-2.
Cambio de tensión de 220 kV a 400 kV de la LE aéreo-subterránea San Sebastián de los Reyes-Loeches y Cambio de conductor de la LE Loeches-Puente de San Fernando, en la provincia de Madrid.

Documento de Síntesis del Estudio de Impacto Ambiental

Figura 1. Ámbito de estudio del proyecto.
4. **INVENTARIO AMBIENTAL**

4.1. **MEDI O FÍSICO**

4.1.1. GEOLOGÍA Y GEOMORFOLOGÍA

Geología

El total de superficie del ámbito de estudio está conformado por suelo sedimentario, en este caso dominado por dos grupos. El primero de ellos y más antiguo, el Terciario, que abarca los sedimentos aluviales y lacustres depositados cuando la cuenca era de tipo endorreico. El segundo y más reciente, el Cuaternario, que reúne los sedimentos de la erosión de la cuenca del Tajo una vez pasó a ser de tipo exorreica, modelando el terreno generando la actual morfología. La relación de superficies de las unidades litológicas incluye: Sedimentos cuaternarios (sedimentos detríticos de permeabilidad media a alta, terrazas, sedimentos aluviales y coluviales), Sedimentos terciarios detríticos (sedimentos detríticos de permeabilidad baja a media, arcosas, arcillas, arenas arcillosas), y Sedimentos terciarios químicos y evaporíticos (yesos y arcillas yesíferas).

Geomorfología

El trazado de la línea comienza en la Subestación de San Sebastián de los Reyes, y transcurre por zonas de cultivo que van perdiendo cota (apoyo T-05) hasta llegar al valle del río Jarama (apoyo T-07 y T-08). El trazado cruza por completo el valle, y en su paso por el término municipal de Paracuellos de Jarama, continúa paralelo a la llanura aluvial del Jarama, localizándose sobre zonas elevadas en el entorno cercano de este curso fluvial (vano T-13 a T-40). La línea comienza a reducir su cota hasta situarse en el propio valle del río Jarama (apoyo T-PAS42) donde se localiza el tramo de línea soterrado. Posteriormente comienza a distanciarse del río Jarama, para dirigirse al valle del río Henares el cual cruza, aumentando bruscamente su cota y dirigiéndose hacia el municipio de Mejorada del Campo (apoyo T-66). Esta zona elevada, no es llana, sino que varía suavemente su cota hasta el apoyo T-73, donde vuelve a descender la cota cruzando el curso fluvial del Arroyo de Pantueña y terminando en la Subestación de Loeches.

Unidades fisiográficas

El ámbito del proyecto se encuentra englobado íntegramente en la Depresión, la cual ocupa el área Central, Este y Sureste de la Comunidad de Madrid. Corresponde a la parte septentrional de la denominada submeseta Sur o Cuenca del Tajo, y los materiales que la constituyen son, casi en su totalidad, de naturaleza detrítica (arenas y arcillas) con facies químicas y lagunares en el centro (yesos y calizas), en su mayoría pertenecientes al Terciario. Al final de este período y durante el Plioceno y Cuaternario Inferior toda la zona sufre procesos de arrasamiento y deposición que dan lugar a un conjunto de superficies, algunas de las cuales se presentan en la actualidad muy retocada y reducida por la posterior diseción de la red fluvial (Páramos, Rañas). Ya en el Cuaternario, se terminan de definir y encajar los grandes valles como el de los ríos Guadarrama, Perales, Manzanares, Jarama, Henares, Torote y Tajuña. El encajeamiento de estos ríos da lugar a una variada gama de formas que son parte integrante de las Vegas y vertientes, y entre las que cabe destacar los glacis, las terrazas y las llanuras de inundación.

Los dominios presentes en el área de estudio son los siguientes:

- Interfluvios y vertientes
4.1.2. HIDROLOGÍA

La relación de cauces de agua superficiales encontrados en el ámbito de estudio de la LE San Sebastián de los Reyes – Loeches es la siguiente:

- Río Jarama
- Río Henares
- Arroyo Viñuelas
- Arroyo del Valle
- Arroyo de Quiñones
- Arroyo de las Tierras Viejas
- Arroyo de la Fuente de la Teja
- Arroyo de Valtibañez
- Barranco de las Viñas
- Arroyo de la Vega
- Arroyo de Quebrantarejas
- Arroyo de Valdebebas
- Arroyo de la Plata
- Arroyo de la Pelaya
- Arroyo de Valdelargo
- Barranco de la Mora
- Arroyo de Rejas
- Arroyo de Pantueña
- Arroyo de las Zorreras
- Arroyo de las Culebras

De los cauces listados anteriormente, solo algunos de ellos son sobrevolados por la línea eléctrica, cruzados por accesos, o bien se encuentran cercanos a alguno de los apoyos del trazado.

Los flujos de agua subterránea que son sobrevolados por la línea en algún tramo de todo su recorrido son: arroyo de Viñuelas, río Jarama, Arroyo del Valle, Arroyo Quebrantarejas, Barranco de las Viñas, Arroyo de la Pelaya, río Henares, Arroyo de Pantueña y el Barranco de la Mora.

En ciertos casos los apoyos se sitúan en el entorno cercano de ciertos ríos principales. El río Jarama, se encuentra situado de forma paralela en gran parte del trayecto de la línea, a lo largo principalmente del municipio de Paracuellos de Jarama. Los apoyos que se sitúan cerca de este son el T-07 y el T-08 a 70 metros, el apoyo T-37 a 120 m y a 130 m del cauce el apoyo T-PAS42.

Dominio público hidráulico

Tras analizar la variable de cursos fluviales y la distancia a los apoyos y sus correspondientes accesos se obtiene los siguientes datos:
- Los accesos que se sitúan en Zona de servidumbre, a 5 metros del cauce son: el acceso compartido por el apoyo T-18 y T-19, y el compartido por los apoyos T-25 y T-26.

- Los apoyos que se sitúan en Zona de policía, a 100 metros del cauce, son: T-07, T-08, T-09, T-26, T-75 y T-76.

- Los accesos que se sitúan en Zona de policía, a 100 metros del cauce, son: T-07, T-08, T-18, T-19, T-22, T-25, T-26, T-27, T-38, T-PAS 42, T-74, T-75 y T-76.

Zonas inundables

En el ámbito de estudio discurren varios ríos de un caudal importante, en el que se debe tener en cuenta las zonas que pueden quedar inundadas en época de crecida de los ríos. Según la Directiva 2007/60 sobre evaluación y gestión de riesgos de inundación, el Ministerio para la Transición Ecológica, ha desarrollado un Sistema Nacional de Cartografía de Zonas Inundables (SNCZI), para la prevención de riesgos de inundación y la planificación territorial. Mediante herramientas de Sistemas de Información Geográfica, se han estudiado aquellas zonas con riesgos de inundación para los periodos de tiempo de 10, 50, 100 y 500 años.

4.1.3. HIDROGEOLOGÍA

Para el estudio de la hidrogeología del ámbito de estudio para la LE San Sebastián de los Reyes - Loeches, se ha consultado en el Catálogo de Información Geográfica de la Comunidad de Madrid el mapa de masas de agua subterránea de la Demarcación del Tajo, en la Comunidad de Madrid, a escala 1:200.000 del año 2014.

Las masas de agua subterránea que encontramos en el ámbito de estudio son principalmente tres: Aluvial del Jarama- Guadalajara/Madrid, Guadalajara y Madrid-Manzanares/Jarama. Como masas de agua subterránea secundarias, debido a su escasa presencia en el ámbito encontramos Aluviales Jarama/Tajuña y La Alcarria.

4.1.4. EDAFOLOGÍA

Los suelos presentes en el ámbito de estudio corresponden a las siguientes definiciones: Fluvisoles éutricos, Fluvisoles calcáricos, Gleysoles móllicos, Regosoles calcáricos, Regosoles districos, Cambisoles éutricos, Cambisoles calcáricos, Calcisoles hápicos, Luvisoles crómicos, Luvisoles cálcicos y Luvisoles hápicos.

4.2. MEDIO BIÓTICO

4.2.1. VETACIÓN Y FLORA

En este apartado se realiza una descripción general de la vegetación y los usos, así como de la flora amenazada presente en el entorno de los apoyos y accesos objeto del presente proyecto. No obstante, es importante aclarar que toda esta información se encuentra desarrollada y más detallada en el Anexo V Análisis detallado de la incidencia sobre la flora amenazada y los Hábitats de Interés Comunitarios.
4.2.1.1. VEGETACIÓN POTENCIAL

Considerando las tipologías biogeográficas y bioclimatológicas propuestas por Rivas-Martínez (1987), el ámbito de estudio se encuadra en la región Mediterránea, superprovincia mediterráneo-ibérica central, provincia castellano-maestrazgo-manchega y sector manchego.

La mayoría de la superficie estudiada se corresponde con la serie de vegetación climatófita mesomediterránea manchega y aragonesa basófila de Quercus rotundifolia o encina (Bupleuro rigidii-Querceto rotundifoliae sigmetum). El resto de las superficies se encuentran clasificadas como la geoserie edafófila Geomeseries riparias mediterráneas y regadíos.

4.2.1.2. DESCRIPCIÓN GENERAL DE LA VEGETACIÓN Y LOS USOS

Para llevar a cabo la caracterización de la vegetación y los usos presentes en el ámbito de estudio se ha consultado en el Catálogo de Información Geográfica de la Comunidad de Madrid, utilizando como base el Mapa del Terreno Forestal 1:10.000 del año 2009.

- Zonas urbanizadas y antropizadas

En cuanto a las zonas urbanizadas, indicar que representan una parte significativa del ámbito, concretamente el 22,8%. Las infraestructuras también ocupan una parte no despreciable, el 2,8%. Canteras, graveras y vertederos alcanzan casi el 1%. En total, las zonas urbanizadas, las infraestructuras y las zonas degradadas para dedicada a recursos mineros, representan un 26,5%, es decir más de la cuarta parte del ámbito. Son notables los núcleos urbanos de Paracuellos del Jarama, San Fernando de Henares, las infraestructuras cercanas al aeropuerto, así como las urbanizaciones de Mejorada del Campo y el núcleo urbano de Loeches.

- Zonas con vegetación natural

Una vez consideradas las zonas cultivadas (39,6%) y las zonas urbanizadas y antropizadas referidas en el párrafo anterior (26,5%), resta aproximadamente un tercio (concretamente un 33,9%) de zonas con vegetación natural. En este tercio con vegetación natural, la formación más abundante es el retamar, con un 13,3% de la superficie, seguido del pastizal y erial, con un 11,1%. La vegetación de ribera arbórea arbustiva, concretamente los tarayales con chopo representan un 3,1% y las choperas un 1,3%. El resto de formaciones arbóreas son encinares, pinares y coscojares, no superando ninguna de ellas el 1%.

 Matorrales

En este tercio con vegetación natural, dominan matorrales de retama (Retama sphaerocarpa) que coloniza todo tipo de áreas abiertas como pies de cerros, llanuras, laderas poco erosionadas o terrenos incultos.

Aunque la formación de matorral más común a lo largo del área estudiada es el retamar, también aparecen formaciones mixtas de retama con aulaga, incluso aulagares. También hay zonas dominadas con matorral campesino aromático, entre los que destacan cantuesares y tomillares.

En las zonas gipsícolas del término municipal de Loeches se desarrollan jabunales, tomillares y espartales, donde dominan especies como la jabuna, falso tomillo, sisallo, barrilla, tomillo salsero, jaguarzos, esparto, etc.

 Eriales y pastizales
Las zonas agrícolas usualmente se acompañan de parcelas en barbecho y, eventualmente, eriales. Además, en torno a zonas urbanas e industriales, donde hay una intensa eliminación y modificación de la vegetación, abundan áreas con eriales y especies herbáceas pioneras y ruderales.

Los pastizales presentes en la zona de estudio tienen un marcado carácter xerofítico. En zonas abandonadas, barbechos, eriales, bordes de caminos o viales, son frecuentes también las comunidades de especies oportunistas, representadas por vegetación de marcado carácter nitrófilo y pionero, así como de herbáceas cosmopolitas.

Formaciones de ribera

La ribera de los ríos Jarama y Henares en el ámbito está dominada por saucedas y choperas. En zonas próximas a la ribera también hay presencia notable de olmos y fresnos. En el contexto de las formaciones de ribera, los tarayales, en unas ocasiones en la orilla, bien dominando o bien compartiendo espacio con chopos y saucyes y, en otras ocasiones, tras la primera línea formando una franja amplia, representan una superficie considerable en el ámbito de estudio. Tanto las choperas saucedas como los tarayales están bien representados en el entorno del Caserío de Henares (San Fernando de Henares).

También son frecuentes otras formaciones a modo de orla arbustivas con zarzas, majuelos, rosalles. Asimismo, también están presentes carrizales con enea y juncales.

Bosques de quercíneas y pinares de repoblación

Los bosques de quercíneas son puramente testimoniales. El encinar y el coscojal están representado por algún vestigio como ocurre en la zona sur del ámbito, al oeste del núcleo de Loeches.

Respecto a los pinares cabe señalar que las plantaciones de pinos aparecen de manera puntual, en forma de pequeñas masas. Son frecuente tanto pinares de pino carrasco (*Pinus halepensis*) como pinares de pino piñonero (*Pinus pinea*).

4.2.1.3. PRESENCIA DE ESPECIES DE FLORA AMENAZADA

Una vez prospectados todos los apoyos y accesos en los que se proyecta alguna actuación, sólo en el entorno de cinco de estos apoyos y accesos del proyecto se ha encontrado alguna especie protegida (ver tabla siguiente). Las especies que han aparecido ha sido tres: *Cynara tournefortii*, *Malvella sherardiana* y *Glycyrrhiza glabra*.

<table>
<thead>
<tr>
<th>Apoyo/ acceso</th>
<th>Especies</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-38</td>
<td>Cynara tournefortii</td>
</tr>
<tr>
<td>T-42</td>
<td>Cynara tournefortii y Malvella sherardiana</td>
</tr>
<tr>
<td>T-63</td>
<td>Glycyrrhiza glabra</td>
</tr>
<tr>
<td>T-64</td>
<td>Glycyrrhiza glabra</td>
</tr>
<tr>
<td>T-65</td>
<td>Glycyrrhiza glabra</td>
</tr>
</tbody>
</table>
El Anexo V Análisis detallado de la incidencia sobre la flora amenazada y los Hábitats de Interés Comunitarios presenta, entre otros datos, información detallada acerca de estas especies y los emplazamientos en las que se han hallado.

4.2.2. Hábitats de Interés Comunitario

La Directiva 92/43/CEE establece, en su anexo I, una serie de Hábitats de Interés Comunitario (en adelante, HIC), los cuales pueden ser de carácter prioritario o no.

4.2.2.1. Descripción de los HICs Presentes en el Ámbito

Los HICs existentes en el ámbito de estudio son los siguientes:

- 92A0-BOSQUES GALERÍA DE SALIX ALBA Y POPULUS ALBA
- 1430-MATORRALES HALONÍTRÓFILOS (PEGANO-SALSOLETEA)
- 5330-MATORRALES TERMOMEDITERRÁEOS Y PRE-ESTÉPICOS
- 1520*-VEGETACIÓN GISÍCOLA IBÉRICA (GYPSONIETALIA) (*)
- 4090-BREZALES OROMEDITERRÁEOS ENDEMÍCOS CON ALIAGA
- 6420-PRADOS HÚMEDOS MEDITERRÁNEOS DE HIERBAS ALTAS DEL MOLINIÓN-HOLOSCHOENION
- 6220*-ZONAS SUBESTÉPICAS DE GRAMÍNEAS Y ANUALES DEL THEROBRACHYPODIETEA (*)
- 92D0-GALERÍAS Y MATORRALES RIBEREÑOS TERMOMEDITERRÁEOS (NERIOTAMARICETEA Y SECURINEGION TINCTORIAE)
- 9340-BOSQUES DE QUERCUS ILEX Y QUERCUS ROTUNDIFOLIA
- 91B0-FRESNEDAS TERMÓFIAS DE FRAXINUS ANGUSTIFOLIA
- 3280-RÍOS MEDITERRÁNEOS DE CAUDAL PERMANENTE DE L PASPALO-AGROSTIDION CON CORTINAS VEGETALES RIBEREÑAS DE SALIX Y POPULUS ALBA
- 3150-LAGOS EUTRÓFICOS NATURALES CON VEGETACIÓN MAGNOPOTAMION O HYDROCHARITION.
- 6310-DEHESAS PERENNIFOLIAS DE QUERCUS SPP
- 9240-ROBLEDALES IBÉRICOS DE QUERCUS FAGINEA Y QUERCUS CANARIENSIS

4.2.3. Fauna

Indicar que el estudio de impacto ambiental incluye un anexo específico dedicado a avifauna, grupo de mayor relevancia en el contexto del presente estudio.

4.2.3.1. Áreas de Importancia Internacional para Aves

En el ámbito de estudio se localiza las siguientes zonas declaradas como Áreas de Importancia Internacional para Aves:

- IBA “Talamanca – Camarma” (Cod: 074), con una superficie de 52.981 ha, es sobrevolada por el tramo San Sebastián de los Reyes- Puente de San Fernando desde el apoyo T-12 al T-35, y desde el apoyo T-37 al T-41, situándose muy próximos T-11, T-36 y T-37. Se trata de uno de los espacios naturales considerados como más valiosos dentro de la Comunidad de Madrid debido a la presencia de especies relevantes como la avutarda en la estepa cerealística, acompañada de otras especies de interés como aguilucho cenizo.
Cambio de tensión de 220 kV a 400 kV de la LE aéreo-subterránea San Sebastián de los Reyes-Loeches y Cambio de conductor de la LE Loeches-Puente de San Fernando, en la provincia de Madrid.

Documento de Síntesis del Estudio de Impacto Ambiental

aguilucho pálido, sísón, cigüeña blanca, cernícalo primilla o el alcaraván. Destaca el área como zona de dispersión de alimentación y dispersión juvenil de rapaces como el Buitre negro, águila imperial ibérica, águila real y águila-azor perdicera.

4.2.3.2. COMUNIDADES FAUNÍSTICAS

En el ámbito de estudio se identifican cinco comunidades faunísticas asociadas a los tipos de ambientes presentes: periurbana, agrícola, matorrales y retamares, riparia y forestal. En estos biotopos se puede encontrar ciertas especies que prefieren dichos entornos por sus características relativas a reproducción, alimentación o hábitos.

Las especies que se incluyen en cada uno de los biotopos se deben a un trabajo de análisis que agrupa las siguientes fuentes de información:

- El Inventario Nacional de Biodiversidad (INB) para las cuadriculas que solapan con el ámbito de estudio, en este caso: UTM 10x10 30 TVK49, 30 TVK59, 30 TVK58 y 30 TVK67.

- Los listados de fauna que se incluyen en las ZEC y ZEPA presentes en el ámbito de estudio. ZEPA ES0000142 “Cortados y cantiles de los ríos Jarama y Manzanares”, la ZEC ES31110006 “Vegas, cuestas y páramos del sureste de Madrid” y la ZEC “Cuencas de los ríos Jarama y Henares” (ES31110001).

- Los avistamientos de especies faunísticas realizados en las diferentes salidas para los estudios de avifauna en campo. Esta información permite descartar o incluir especies en los listados extraídos de las fuentes bibliográficas citadas anteriormente.

4.2.3.3. LISTADO DE FAUNA

Se describe el estado legal de las especies presentes o potencialmente presentes según las fuentes consultadas y el estudio de campo en el ámbito de estudio (2 km de la traza):

- En el Catálogo Español de Especies Amenazadas (RD 139/2011) se recogen:
 - 112 especies catalogadas en Régimen de protección Especial.
 - 3 especies Vulnerables: Aguilucho cenizo (Circus pygargus), Sísón común (Tetrax tetrax) y Gango ortega (Pterocles orientalis).
 - 2 especies en Peligro de Extinción: Milano real (Milvus milvus) y Águila imperial (Aquila adalberti).

- Catálogo Regional de especies amenazadas de fauna y flora silvestres y se crea la categoría de árboles singulares (Decreto 18/1992. Actualización 2015) se recogen:
 - 18 especies catalogadas de Interés Especial.
 - 6 especies catalogadas Sensibles a la alteración de su hábitat: Sísón común (Tetrax tetrax), Avetorillo (Ixobrychus minutus), Martinetete común (Nyctocorax nyctocorax). Garza imperial (Ardea purpurea), Aguilucho lagunero occidental (Circus aeruginosus), Sísón común (Tetrax tetrax) y Avutarda común (Otis tarda).
 - 7 especies catalogadas como Vulnerables: sapillo moteado común (Pelodytes punctatus), Cigüeña blanca (Ciconia ciconia), Aguilucho cenizo (Circus pygargus),
4.2.3.4. ÁREAS DE SENSIBILIDAD Y RIESGO PARA LA AVIFAUNA EN LÍNEAS ELÉCTRICAS

Red Eléctrica de España ha llevado a cabo entre 2010 y 2016 el proyecto “Identificación, Caracterización y Cartografiado de los Corredores de Vuelo de las Aves que Interactúan con las Líneas de Electrificas de Alta Tensión”. Este proyecto se ha planteado en el contexto del estudio y búsqueda de soluciones a los problemas derivados de las interacciones entre aves y tendidos de transporte de electricidad y fundamentalmente a los accidentes de colisión de ejemplares contra los cables de las líneas eléctricas, que afecta de forma más o menos importante a diversas especies, entre ellas varias amenazadas.

El ámbito del proyecto ha cubierto la totalidad del territorio español, de forma que en 2016 se ha podido completar el desarrollo de distintas herramientas que con este propósito se han elaborado para cada una de las 17 comunidades autónomas. Estas herramientas, que constituyen los resultados principales del proyecto, son de tres tipos:

- Los sistemas de información geográfica elaborados para cada territorio, con la información más completa y actualizada sobre las áreas de presencia y rutas de vuelo de un total de 46 especies de aves consideradas propensas o sensibles a la colisión (especies focales).

- Los mapas de sensibilidad, que permiten identificar áreas más o menos sensibles al paso de las líneas eléctricas en unción del patrón de agregación intra e inter específico de las especies focales, y que por lo tanto son especialmente útiles para la planificación de nuevos trazados de líneas.

- Los mapas de riesgo, que además de considerar el patrón de distribución de las especies tienen en cuenta la presencia de factores que influyen en la probabilidad de ocurrencia de accidentes, y que son la herramienta principal para la planificación de medidas correctoras priorizando las actuaciones en los tramos de línea con mayor incidencia potencial sobre la avifauna.

4.2.3.5. ESPECIES PROTEGIDAS Y AMENAZADAS

Los valores faunísticos más destacables presentes en el ámbito de estudio están asociados a los hábitats esteparios y al río Henares y Jarama. Los hábitats esteparios potencialmente engloban especies como el cernícalo primilla, catalogado en Peligro de Extinción (cat. Autonómico), la ganga ortega, el sisón y la avutarda, especies en las que se cita la colisión con tendidos eléctricos como una amenaza a la conservación en el libro rojo de aves de España (Madroño y col. 2004), y el alcaraván común. Los hábitats esteparios de mayor calidad se localizan en el área norte del ámbito de estudio, debido a los espacios naturales y a la escasez de núcleos urbanos.

Por otro lado, el río Henares y Jarama presentan un gran valor asociado a su funcionalidad como corredor ecológico, y como punto de agua. Su vegetación potencia el refugio, nidificación y área...
de caza de especies de fauna. En este hábitat destaca la presencia de especies acuáticas como el aguilucho lagunero, el avetorillo, y la garza imperial, catalogadas como sensible a la alteración de su hábitat, y de cigüeñuela común, avión zapador y martín pescador, especies catalogadas de interés especial. Además, destaca la presencia de la chova piquirroja, catalogada de interés especial (Cat. autonómico).

4.3. MEDI O SOCIOECONÓMICO

La línea eléctrica, los apoyos y los accesos, transcurren a lo largo de 5 municipios que, siguiendo el orden de localización norte-sur, serían San Sebastián de los Reyes, Paracuellos del Jarama, San Fernando de Henares, Mejorada del Campo y Loeches. Además de éstos, el ámbito de estudio incluye otros municipios como Torrejón de Ardoz, Cobeña, Ajalvir, Alcobendas, Madrid y Coslada, de los cuales no se hará un estudio exhaustivo de las variables analizadas debido a que no hay actuaciones ni accesos en estos términos municipales.

4.3.1. Descripción demográfica

En la descripción demográfica se han recopilado los datos referentes a las características sociales, económicas, ambientales y demográficas, todas ellas consultadas en el banco de datos municipales y zonales del Instituto de Estadística de la Comunidad de Madrid (ALMUDENA) y el Instituto Nacional de Estadística (INE).

4.3.2. Indicadores socioeconómicos

La tasa de paro se ha analizado en función de los datos obtenidos del Instituto de Estadística de la comunidad de Madrid del año 2018, y se ha diferenciado por grandes grupos de edad y por sexo para estudiar las posibles diferencias que puedan resultar. En el grupo de edad más joven, la tendencia en todos los ámbitos territoriales estudiados es que la tasa de paro del sector femenino es inferior respecto al sector masculino, mientras que en los siguientes grupos de edad no se sigue esta tendencia, sino que varía. En el sumatorio total de los tres grupos de edad analizados, el número de mujeres en paro es superior al de los hombres. A nivel municipal, Paracuellos del Jarama resulta ser el ámbito con menor tasa de paro, con un 3,79 %, mientras que, Mejorada del Campo, con un 7,17 % es el territorio con mayor tasa de paro.

En función de los datos expuestos por el Instituto de Estadística de la comunidad de Madrid sobre el número de afiliados a la seguridad social por rama de actividad en cada municipio, se puede estudiar en qué sectores o ramas de actividad se encuentra situada la población de cada municipio, siendo las ramas de actividad con mayor número de trabajadores las relacionadas con los servicios a empresas, actividad financiera, distribución y hostelería. Las actividades del sector primero (agricultura, ganadería y minería) y la construcción resultan los sectores con menor número de población empleada.

Se ha analizado las declaraciones realizadas en el año 2014 clasificadas por cada uno de los tramos base imponible de la declaración de la renta. Destacan los municipios de San Sebastián de los Reyes y Paracuellos de Jarama como los municipios con una renta superior al resto, en consonancia con los datos del total de la Comunidad de Madrid. Por el contrario, Mejorada del Campo resulta ser el municipio con la renta más baja.
4.4. PAISAJE

4.4.1. Interpretación general del paisaje en el ámbito territorial

La Comunidad de Madrid se encuadra físicamente en las dos grandes unidades fisiográficas constituidas por el Sistema Central y la Depresión del Tajo. Por su parte, el ámbito de la actuación se engloba totalmente en el dominio de la Depresión, que tiene su inicio sobre los taludes arcósicos, más o menos degradados, procedentes de la erosión del Sistema Central. A continuación, se desarrolla el complejo de terrazas situadas a distinta cota sobre el curso de los ríos (terrazas altas, medias y bajas) que ocupan una superficie bastante extensa, sobre todo en las cuencas del Henares y del Jarama.

Finalmente, y siguiendo hacia el sur, aparece una formación muy característica, los páramos o llanuras relativamente elevadas, cuyas duras calizas han resistido a la erosión. En su límite existe casi siempre un talud, en general pronunciado, – las cuestas del páramo – en el que pueden observarse los sucesivos materiales que lo forman; las plataformas tabulares de los páramos van siendo hendidas por los torrentes y, en ocasiones, quedan reducidas a mesas de contornos festoneados.

La estrecha relación de estas consideraciones con la vegetación y la acción humana acaba de configurar las grandes unidades entre las que se desarrolla el trazado de la línea eléctrica: el entorno de los cursos de agua más importantes y los páramos.

4.4.2. Identificación de unidades y/o ámbitos paisajísticos

Atendiendo a la información proporcionada por el documento «ANÁLISIS, DIAGNÓSTICO Y EVALUACIÓN DE LA CALIDAD DEL PAISAJE DE LA COMUNIDAD DE MADRID PARA EL ESTABLECIMIENTO DE CRITERIOS DE PROTECCIÓN Y ORDENACIÓN DEL TERRITORIO» publicado por la Dirección General de Urbanismo y Planificación Territorial de la Consejería de Medio Ambiente y Ordenación del Territorio en 2006, en el ámbito de estudio se identifican un total de 13 “tipos de paisaje” que engloban 29 “unidades de paisaje” y se agrupan en 5 “grandes conjuntos paisajísticos”, es decir, agrupaciones de teselas de paisaje similares en su estructura y organización y que expresan, de manera sintética, la diversidad de los grandes conjuntos paisajísticos de la región, y que se construyen por agrupación del siguiente modo:

- Unidades de paisaje
 - Tipos de paisaje
 - Grandes conjuntos paisajísticos

Según se detalla en el citado documento, para la caracterización paisajística se ha procedido, en primer lugar, a identificar y cartografiar las denominadas “unidades de paisaje”, es decir, las configuraciones básicas de la diversidad del paisaje de la Comunidad de Madrid a la escala adoptada (1:50.000). En esta tarea se ha atendido prioritariamente a los principales elementos estructurantes del paisaje y, en un segundo plano, a consideraciones de tipo perceptivo en relación con las cuencas visuales.

Por su parte, la identificación y caracterización de los “tipos de paisaje” contempla las agrupaciones de las unidades de paisaje similares en su estructura y organización y que expresan, de manera sintética, la diversidad de los grandes conjuntos paisajísticos de la región.
Finalmente, y al objeto de permitir un tratamiento conjunto, en relación con los criterios para la ordenación y gestión del paisaje, los tipos de paisaje han sido agrupados en “grandes conjuntos paisajísticos (GCP)” en los que se reconoce la afinidad de carácter necesaria para ello.

4.4.2.1. DESCRIPCIÓN DE LOS TIPOS DE PAISAJE Y SUS PRINCIPALES UNIDADES PAISAJÍSTICAS

Atendiendo a la clasificación antes expuesta, a continuación, se describen los tipos de paisaje presentes en el ámbito de trabajo, así como las unidades que los conforman.

- Llanos escalonados de las márgenes del jarama medio (28)
- Cuestas y taludes del Jarama Medio (29)
- Campiñas minifundistas de la margen derecha del Jarama medio (30)
- Dehesas, montes y pastaderos de la cuenca sedimentaria (31)
- Jarama – Manzanares (42)
- Aljezares de la margen derecha del Jarama (43)
- Jarama medio (45)
- Campiñas del Jarama – Henares (46)
- Vegas y terrazas del Henares (47)
- Cuestas del Henares (48)
- Valles y cuestas del Anchuelo y el Pantueña (50)
- Páramos (51)
- Vertientes del Páramo de Campo Real (54)

4.4.3. CALIDAD VISUAL DEL PAISAJE

La calidad visual del paisaje se determina a partir de la información contenida en las capas de información cartográfica “Calidad Visual del Paisaje de la Comunidad de Madrid, a escala 1:50.000 del año 1998” publicada por la Consejería de Medio Ambiente y Ordenación del Territorio.

El análisis de la calidad visual del paisaje de la Comunidad de Madrid se ha realizado mediante la valoración de la incidencia visual de los factores típicos que conforman y dan razón al paisaje: fisiografía (geomorfología), vegetación y usos del suelo, agua superficial y las estructuras y elementos de carácter antrópico presentes en el territorio. El mérito de las unidades de paisaje de la Comunidad de Madrid para ser conservadas se ha evaluado para cada una de ellas y se determina a través de unos índices de carácter cualitativo y cuantitativo que definen su valor de calidad visual.

La diversidad de ambientes presente en cada unidad de paisaje; las singularidades naturales definidas por los Espacios Naturales de interés para la conservación del paisaje que alberga; y los elementos culturales de carácter histórico-patrimonial con notable incidencia visual, modifican al alza su calidad visual.

Además, se ha incorporado en el valor de calidad visual de paisaje de cada unidad, la amplitud del entorno que ve. El valor intrínseco de calidad visual de las unidades de paisaje se ha modificado según su amplitud escénica: es decir, cuando un punto o superficie de la unidad tiene
vistas escénicas de los cerramientos o puntos culminantes seleccionados. El modelo utilizado para la determinación de la calidad visual del paisaje se presenta a continuación:

La determinación de la calidad visual del paisaje se ha realizado por integración de los factores que han intervenido en su definición, tal y como se presentaba en el modelo. El proceso de integración, además, tiene en cuenta que los resultados obtenidos para cada factor del modelo son relativos en el conjunto de unidades de paisaje de la Comunidad que varían de mayor calidad visual a menor calidad visual.

4.4.4. FRAGILIDAD VISUAL DEL PAISAJE

La fragilidad visual se puede definir como la “susceptibilidad de un territorio al cambio de sus condiciones perceptivas cuando se desarrolla un uso sobre él (CIFUENTES, 1979). Es la expresión del grado de deterioro que un paisaje experimentaría ante la incidencia de determinadas actuaciones. La fragilidad visual de un paisaje es, por tanto, función inversa de la capacidad de absorción que un territorio posee para hacer frente a las alteraciones sin pérdida de su calidad.

Como en el caso de la calidad visual, la fragilidad visual del paisaje se determina a partir de la información contenida en las capas de información cartográfica “Fragilidad Visual del Paisaje de la Comunidad de Madrid, a escala 1:50.000 del año 1998” publicada por la Consejería de Medio Ambiente y Ordenación del Territorio.

De este modo, sobre las unidades de paisaje de la Comunidad de Madrid se plantea un modelo de fragilidad visual en el cual intervienen tres tipos de factores que a su vez dependen de una serie de variables y características del medio.

4.4.5. ANÁLISIS DE INTERVISIBILIDAD

El concepto de Intervisibilidad tiene que ver con la accesibilidad visual de un punto del territorio desde el resto de puntos de su entorno. Se trata, por tanto, de una medida de lo visible o no que puede ser un territorio con independencia de la actuación que se quiera llevar a cabo en él. Este aspecto se estudia en profundidad en el anexo de paisaje del estudio de impacto.

4.5. MEDIO TERRITORIAL

4.5.1. PLANEAMIENTO URBANÍSTICO

4.5.1.1. MARCO NORMATIVO

Las actuaciones del proyecto del proyecto de Cambio de Tensión de la línea eléctrica L/220 a 400 kV San Sebastián de los Reyes- Loeches y Cambio de Conductor del tramo L220 kV Puente de San Fernando- Loeches, se sitúan en los términos municipales de San Sebastián de los Reyes, Paracuellos del Jarama, San Fernando de Henares, Mejorada del Campo y Loeches, en la Comunidad de Madrid.

A continuación, se muestra un listado de cada uno de los Planes Generales de Ordenación Urbana vigentes en cada uno de los municipios analizados en el ámbito de estudio, y en su caso, si la hubiese, la última modificación puntual de estos que afecte al ámbito. Además de describe por
municipios, algunas de las características históricas de ciertos PGOU, o los objetivos perseguidos en ellos.

<table>
<thead>
<tr>
<th>Municipio</th>
<th>Plan General de Ordenación Urbana vigente</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Sebastián de los Reyes</td>
<td>Plan General de Ordenación Urbana PGOU 2001 de San Sebastián de los Reyes</td>
</tr>
<tr>
<td>Paracuellos de Jarama</td>
<td>Plan General de Ordenación Urbana PGOU 2001 de Paracuellos de Jarama</td>
</tr>
<tr>
<td>San Fernando de Henares</td>
<td>Plan General de Ordenación Urbana PGOU 2002 de San Fernando de Henares</td>
</tr>
<tr>
<td>Mejorada del Campo</td>
<td>Plan General de Ordenación Urbana PGOU 1997 de Mejorada del Campo. Modificación Puntual del PGOU 2013 de Mejorada del Campo</td>
</tr>
<tr>
<td>Loeches</td>
<td>Se acoge al PGOU de la Comunidad de Madrid (Normas Subsidiarias)</td>
</tr>
</tbody>
</table>

4.5.2. MONTES DE UTILIDAD PÚBLICA

En el ámbito de estudio se localizan dos Montes de Utilidad Pública que siguiendo la dirección de la línea Norte-Sur son “El Calderillo” y “Finca del Caserío del Henares”. Para analizar dichos espacios, se ha analizado la información que el Ministerio para la Transición Ecológica muestra en las fichas específicas de cada uno de los Montes de Utilidad Pública existentes.

Bajo el vano de la línea entre el apoyo T-40 y el T-41, se localiza la zona occidental del Monte de Utilidad Pública “El Calderillo” con una superficie de 15,5 hectáreas en el municipio de Paracuellos del Jarama. Su incorporación al Catálogo fue tras la Orden Ministerial del 23 de septiembre de 1978. Las formaciones vegetales predominantes son pinares de Pinus halepensis procedentes de repoblación. Además, destacan zonas más abiertas de matorral y retamar.

La LE en su paso por la subestación de San Fernando de Henares sobrevuela el Monte de Utilidad Pública de forma transversal “Finca del Caserío del Henares”, con una superficie aproximada de 116 hectáreas donde la formación vegetal típica son principalmente los sotos y ribera de Populus alba, Fraxinus angustifolia, Damaris canariensis y Salix sp. Además de los anteriores existen bosquetes de encinas, pinos piñoneros y retamares. Esta unidad se encuentra protegida en su totalidad y se encuadra en la ZEPA ES0000142 “Cortados y Cantiles de los Ríos Jarama y Manzanares” y la ZEC ES3110006 “Vegas, Cuestas y Páramos del Sureste de Madrid”. Los cursos fluviales que se pueden encontrar asociados son, el Arroyo del Valle, el cual cruza transversalmente la finca y, el Río Henares, que se sitúa en el límite oriental de ésta.

4.5.3. Vías pecuarias

Tras la consulta del Geoportal de la Infraestructura de datos espaciales de la Comunidad de Madrid, se han identificado dentro del ámbito de estudio, las siguientes vías pecuarias:

- Vereda Carpetana
- Vereda de Loeches
- Cordel del Butarrón
4.5.4. DERECHOS MINEROS

En relación a dichos recursos mineros aprovechables presentes en el ámbito de estudio, se ha obtenido información del Ministerio para la Transición Ecológica en el Catastro Minero.

A lo largo del ámbito de estudio transcurren dos cursos fluviales muy relevantes que en orden de importancia son el río Jarama y el río Henares, los cuales dejan en sus márgenes materiales cuaternarios de bastante importancia como recursos de explotación minera. Es por ello, por lo que es una zona muy rica en cuanto a recursos, destacando las explotaciones dedicadas a los áridos. Se identifican varias explotaciones en los diferentes términos municipales con reservas de gran tamaño, varias de ellas activas dedicadas a la extracción de gravas, arcillas, arenas (usualmente utilizadas en la construcción), sepiolita y otras sustancias.

4.5.5. INFRAESTRUCTURAS, EQUIPAMIENTOS Y ESPACIOS PRODUCTIVOS

Carreteras

Se han identificado un total de 18 carreteras que interceptan el trazado de la línea eléctrica y aquellas consideradas de importancia en el ámbito. Para cada una de ellas, se ha identificado el gálibo mínimo de puentes y pasos subterráneos, además de la distancia al apoyo más cercano. Entre estas destacan la autovía E-5, con titularidad europea, y la A-2 o autovía del Nordeste.
Líneas eléctricas

Son 24 las líneas eléctricas que sobrevuelan el ámbito de estudio. La mayor densidad de las infraestructuras se localiza en las subestaciones presentes en el ámbito (Loeches, Puente de San Fernando, Ardoz y San Sebastián de los Reyes):

Gaseoductos y Oleoductos

Para llevar a cabo el inventario de gaseoductos se ha acudido a la Base Cartográfica Nacional a Escala 1:25.000. Además de manera complementaria se ha comprado la información disponible en la Comunidad de Madrid.

El proyecto cumple toda la normativa y reglamentación existente en cuanto a distancias de seguridad con todos los elementos próximos al trazado, incluida la instalación de CLH que se cruza en los vanos T-59/T-60 y T-60/T-61, como se indica en la Resolución. Asimismo, indicar que los detalles relacionados con la seguridad de la línea se encuentran en el Documento 5 Estudio de Seguridad del proyecto.

Por tanto, los gaseoductos y oleoductos presentes en el ámbito de estudio son:

- Rota- Zaragoza
- Loeches- Instalación de CLH- Torrejón de Ardoz-San Fernando de Henares.
- Loeches- Instalación de CLH-Villaverde
- Loeches - Base Aérea de Torrejón.
- Loeches- Instalación de CLH Barajas (Madrid)

De manera más concreta, los accesos a los apoyos T-56, T-57, T-58, T-59, T-60 y T-61 cruzan el gaseoducto Loeches- Instalación de CLH Barajas. Todos los cruces con el gaseoducto se realizan en viales en existentes en buen estado.

Líneas de alta velocidad

El ámbito de estudio es atravesado por la línea de alta velocidad Madrid- Barcelona, entre los apoyos T-66 y T-67, en los términos municipales de Mejorada del Campo y San Fernando de Henares.

Servidumbres aeronáuticas

4.6. PATRIMONIO CULTURAL

El inventario de los elementos que constituyen el patrimonio cultural del ámbito del proyecto se encuentra en el Estudio de Patrimonio Cultural que acompaña al presente Estudio de Impacto Ambiental.
5. VALORACIÓN DE LAS ALTERNATIVAS SEGÚN CRITERIOS TÉCNICOS Y AMBIENTALES

5.1. CONSIDERACIONES PREVIAS PARA LA VALORACIÓN DE LAS ALTERNATIVAS

La selección de la alternativa se ha obtenido de la combinación del análisis técnico y ambiental del proyecto.

En el apartado 2 “Descripción del proyecto y sus alternativas”, se desarrollaron, por un lado las alternativas posibles de los vanos con incumplimiento de las distancias de seguridad que implican el cambio de tensión de la línea objeto del proyecto, que son:

- Alternativa A: Recrecer el apoyo de menor numeración
- Alternativa B: Actuar sobre el elemento que incumple distancias reglamentarias.
- Alternativa C: Recrecer el apoyo de mayor numeración.

Para de manera posterior analizar la viabilidad técnica de estas alternativas, mediante criterios técnicos de cumplimiento imprescindible y finalmente identificar las alternativas que son objeto de valoración ambiental.

Para el resto de las actuaciones del proyecto: nueva construcción, desmantelamiento, actuaciones de mantenimiento y mejora, y las adecuaciones de los apoyos PAS, se han aplicado medidas en fase de diseño para la selección de la mejor alternativa de acceso y localización.

El proceso metodológico a través del cual se seleccionan las alternativas viables de las actuaciones y se puede modificar el proyecto, se divide en dos fases (fase de diseño previa y análisis ambiental de las alternativas).

En la fase 1 de diseño interaccionan los principales valores ambientales del territorio a estudiar con las características técnicas del proyecto, cuyo diagnóstico puede implicar la modificación del proyecto en cuestiones previas como la localización de apoyos o la modificación técnica del apoyo (en lugar de recrecer, se coloca un mayor peso de cadenas).

La fase 2 de análisis ambiental valora el impacto de todas las alternativas viables objeto de estudio para definir la selección de las alternativas que se van a ejecutar, pudiendo implicar la modificación del proyecto en cuestiones más relevantes como en lugar de recrecer un apoyo previsto (alternativa A), recrecer el otro apoyo (alternativa C) o incluso actuar sobre el terreno rebajándolo o eliminándolo (alternativa B).

FASE 1. Fase de diseño

En esta fase de diseño se identifican las variables ambientales relevantes del área de estudio y se analizan teniendo en cuenta la información oficial, los resultados de las prospecciones de campo realizadas antes de elaborar el estudio y los requerimientos/condicionantes que apliquen (resoluciones del 21 de febrero de 2018 y del 22 de junio de 2018).

Una vez identificadas y analizadas las variables ambientales y su sensibilidad se trabaja sobre medidas de diseño enfocadas a la priorización de la selección de áreas o actuaciones que reduzcan los efectos ambientales del proyecto, aportadas a continuación:
a. Diseño de los caminos de acceso a los apoyos o áreas de actuación. Los criterios se explica detalladamente en el capítulo 7.1.1 “Medidas generales de diseño”, y estos consisten en la priorización de la red de caminos existentes y la no afectación a vegetación natural.

b. Ejecución de un mapa de capacidad de acogida para localizar los apoyos de nueva construcción en áreas sin hábitats de interés comunitario cuya traza evitará el sobrevuelo del colegio Monfort.

c. Priorización de la no afectación a los valores del Parque Regional del Sureste, ZEC “Cuencas de los ríos Jarama y Henares”, ZEC “Vegas, Cuestas y Páramos del Sureste de Madrid” y ZEPA “Cortados y Cantiles de los ríos Jarama y Manzanares”.

d. Priorización de la no afectación a flora protegida o hábitats de interés comunitario, y la no afectación de especies protegidas de fauna.

e. Disminuir el número de actuación con maquinaria pesada mediante la búsqueda de alternativas técnicas que supusieran mejor opción ambiental y técnica.

f. Priorización de recrecer apoyos de alineación frente a apoyos de amarre. El área de ocupación y maquinaria utilizada en los apoyos de amarres es mayor que los apoyo en alineación.

Modificación del proyecto

Tras la aplicación de los criterios anteriormente establecidos de la fase 1 se procede a la modificación y adaptación del proyecto técnico. Concretamente tras esta fase se selecciona/adapta el proyecto en:

- Se define la localización de los nuevos apoyos T-77 y T-78, T-0A, T-0B y T-0.

- Se modifica recrecer al apoyo T-73 (actuación de maquinaria pesada) por poner cadenas de suspensión dobles y contrapesos (actuación a ejecutar con maquinaria ligera) en el apoyo.

- Se modifica recrecer el apoyo T-76 por instalar doble cadena y contrapesos.

FASE 2. Análisis ambiental de la alternativa.

El análisis ambiental a través del cual se va a seleccionar la alternativa a ejecutar se desarrolla en el apartado siguiente 5.2 Valoración ambiental. A modo de síntesis la selección de la alternativa se calcula mediante el sumatorio de la valoración cuantitativa en cada variable de cada una de las alternativas. Aportando un peso a cada una de las variables en función de su importancia/relevancia o sensibilidad.

Modificación del proyecto

Una vez identificada la mejor alternativa ambiental se procede a modificar/adaptar el proyecto técnico, en la medida de lo posible. Esto se justifica y desarrolla en el 5.3 Justificación de la alternativa seleccionada, y posteriormente se evalúa el impacto en el Capítulo 6.
5.2. VALORACIÓN AMBIENTAL DEL POTENCIAL IMPACTO DE LAS ALTERNATIVAS

El objetivo de este apartado es obtener un **valor numérico para cada alternativa que represente el impacto ambiental** que supone la ejecución de dichas alternativas.

Es necesario aclarar que este estudio de alternativas aborda la valoración del impacto en el caso de recrecido de los apoyos en los vanos en los que existe más de una alternativa viable. En la mayoría de las situaciones, existen dos alternativas: recrecer uno u otro apoyo de los dos que componen el vano. Es por ello que, en el apartado 5.3, se valorarán los posibles efectos que supondría el recrecido de cada uno de los dos apoyos existentes en cada vano. No obstante, es excepción, el vano 61-62, en los cuales se considera recrecer uno de los dos apoyos, el T-62, y como alternativa, el rebaje del terreno.

5.2.1. METODOLOGÍA

La metodología para la valoración de los impactos tiene las siguientes fases:

- En primer lugar, se identifican cuáles son las acciones del proyecto, tanto en la fase de construcción como en la de explotación, para después establecer las mencionadas relaciones causa-efecto entre dichas acciones y cada una de las variables o factores ambientales afectables por las mismas.

- Las acciones del proyecto citadas anteriormente son la causa de un conjunto de impactos producidos sobre las distintas variables medioambientales descritas en el inventario. Los factores ambientales elegidos para cada variable del medio y el tipo de afección son los siguientes: suelos, hidrología, exposición a campos electromagnéticos, vegetación y flora, hábitats de interés, fauna, paisaje, espacios naturales y uso forestal y pecuario.

- Se ha elaborado una matriz de identificación de impactos que muestra las interrelaciones entre las acciones del proyecto y los parámetros ambientales inventariados.

- Para la valoración de los impactos, se describen los algoritmos empleados para cuantificar la magnitud de los diferentes indicadores de impacto seleccionados. Con estas valoraciones de todos los factores ambientales, se elabora una matriz de cuantificación de la magnitud de impactos absoluta.

- La matriz de cuantificación de la magnitud de impactos absoluta es transformada a una matriz de cuantificación de la magnitud de impactos de valores relativos, expresando los valores absolutos como porcentaje respecto del valor de la alternativa con el valor máximo para cada factor ambiental.

- Finalmente se obtiene un valor global ambiental de impacto para cada alternativa, asignando unos pesos a cada factor ambiental según su importancia, lo que permite una comparación global de cada alternativa desde el punto de vista ambiental.

5.2.2. IDENTIFICACIÓN DE LOS IMPACTOS POTENCIALES

Como primer paso, es necesario conocer cuáles son las acciones del proyecto, tanto en la fase de construcción como en la de explotación, para después establecer las mencionadas relaciones causa-efecto entre dichas acciones y cada una de las variables o factores ambientales.
5.2.2.1. ACCIONES DE PROYECTO GENERADORAS DE IMPACTO

Las principales acciones asociadas al proyecto durante la fase de obras son las siguientes:

- **Adecuación de accesos hasta los apoyos y, en su caso, hasta la zona de rebaje.** Son principalmente campo a través de la maquinaria y puntualmente el acondicionamiento de tres viarios ya existentes. Estos accesos pueden suponer un impacto por ocupación del suelo y por los necesarios movimientos de maquinaria.

- **Refuerzo de cimentaciones.** Cada uno de los apoyos que se vayan a recrecer será objeto de catas para determinar la aptitud estructural de las cimentaciones actuales para soportar el recrecido y valorar si es necesario.

- **Acopio de materiales, que incluye el transporte y depósito de los requeridos en el izado de los apoyos.** El acopio de materiales se realizará a pie de obra, previo almacenamiento en algún depósito acondicionado en alguna instalación cercana, reduciendo la potencial incidencia sobre el suelo y sobre la cubierta vegetal.

- **Montaje e izado del recrecido de los apoyos, sobre un área de montaje más o menos amplia según el método utilizado, libre de vegetación y lo más llana posible.** Esta actuación, junto a la potencial eliminación de vegetación, conllevará compactación del suelo por el paso de la maquinaria.

- **Retirada de tierras, incluyendo las extraídas en los rebajes a realizar, residuos y rehabilitación de daños.** Los depósitos generados son generalmente poco voluminosos por lo que suelen depositarse extendidos en las inmediaciones del apoyo o bien son retirados.

- **Demanda de mano de obra local en la ejecución de los trabajos,** un efecto que se considera positivo sobre la socioeconomía local.

No obstante, de cara al cruce con las interacciones de los factores ambientales, han sido consideradas las siguientes acciones:

Fase de construcción

- **Adecuación de un camino de acceso**
- **Despeje y desbroce**
- **Adecuación y ocupación de la campa de trabajo en torno a los apoyos para ubicación de la grúa.**
- **Refuerzo de cimentaciones**
- **Acopio temporal de inmediaciones apoyo**
- **Tránsito de vehículos y maquinaria**
- **Rebaje de terreno**
- **Movimientos de tierras**
- **Acopio de materiales para el izado del recrecido**
- **Generación de RCD y RP**
Fase de explotación

- Presencia caminos acceso para mantenimiento
- Presencia de cables a mayor altura
- Aumento de tensión en la línea
- Tránsito de vehículos para mantenimiento

5.2.2.2. VARIABLES AMBIENTALES SUSCEPTIBLES DE IMPACTO

Las acciones del proyecto (recrecido y rebaje) citadas anteriormente son la causa de un conjunto de impactos producidos sobre las distintas variables medioambientales descritas en el inventario. Se ha hecho necesario el establecimiento de un conjunto de parámetros, denominados factores ambientales, para cada una de las mencionadas variables, cuya función será la de servir de base para la elaboración de indicadores de los impactos de las alternativas del proyecto, en cualquiera de sus alternativas.

Los factores ambientales elegidos para cada variable del medio son los siguientes:

- Cambio Climático
- Atmosfera
- Suelos
- Hidrología
- Vegetación y flora
- Hábitats de Interés
- Fauna
- Paisaje
- Socioeconomía
- Espacios Naturales
- Planificación del territorio
- Forestal, pecuario y patrimonio

5.2.2.3. INTERACCIONES ENTRE ACCIONES DEL PROYECTO Y FACTORES AMBIENTALES: MATRIZ DE IMPACTOS

Se ha procedido a identificar los impactos mediante una matriz de identificación de impactos que muestra las interrelaciones entre las acciones del proyecto (recrecido y rebaje) y los parámetros ambientales inventariados, señalando aquellos nodos en los que determinada acción del proyecto provoca un efecto sobre el factor ambiental, tanto para la fase de construcción como para la de explotación (ver tabla siguiente). Las actuaciones asociadas a los apoyos a construir, desmantelar, pasos de aéreo a subterráneo y trabajos de renovación y mejora se evalúan directamente en el capítulo 6, ya que no son objeto de este análisis de alternativas.
Tabla 5. Matriz de identificación de impactos que muestra las interrelaciones entre las acciones del proyecto capaces de producir impacto y los factores ambientales inventariados, tanto para la fase de construcción, como para la de explotación.

<table>
<thead>
<tr>
<th>MEDIO</th>
<th>ACCIONES GENERADORAS DE IMPACTO vs FACTORES AMBIENTALES SUSCEPTIBLES DE IMPACTO</th>
<th>FASE CONSTRUCCIÓN</th>
<th>FASE EXPLOTACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Adecuación de camino de acceso</td>
<td>Despeje y desbroce</td>
</tr>
<tr>
<td>FÍSICO</td>
<td>Cambio Climático</td>
<td>Alteración de emisiones de CO₂</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atmósfera</td>
<td>Emisiones de polvo y gases</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variaciones de niveles sonoros</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alteración de los CEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suelos</td>
<td>Alteración propiedades del suelo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incremento procesos erosivos</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incremento riesgo contaminación</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hidrología</td>
<td>Alteración de la red de drenaje</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Incremento riesgo contaminación</td>
<td></td>
</tr>
<tr>
<td>BIÓTICO</td>
<td>Vegetación y flora</td>
<td>Afección a vegetación natural</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ocupación áreas flora protegida</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hábitats Interés</td>
<td>Ocupación HICs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fauna</td>
<td>Modificación del riesgo de colisión</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>molestias por ruido y presencia</td>
<td></td>
</tr>
</tbody>
</table>
ACCIONES GENERADORAS DE IMPACTO vs FACTORES AMBIENTALES SUSCEPTIBLES DE IMPACTO

<table>
<thead>
<tr>
<th>MEDIO</th>
<th>FASE CONSTRUCCIÓN</th>
<th>FASE EXPLOTACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adecuación de camino de acceso</td>
<td>Adecuación de camino de acceso</td>
</tr>
<tr>
<td></td>
<td>Despeje y desbroce</td>
<td>Despeje y desbroce</td>
</tr>
<tr>
<td></td>
<td>Adecuación y ocupación de campo en los apoyos</td>
<td>Adecuación y ocupación de campo en los apoyos</td>
</tr>
<tr>
<td></td>
<td>Acopio temporal de inmediaciones apoyo</td>
<td>Acopio temporal de inmediaciones apoyo</td>
</tr>
<tr>
<td></td>
<td>Tránsito de vehículos y maquinaria</td>
<td>Tránsito de vehículos y maquinaria</td>
</tr>
<tr>
<td></td>
<td>Rebaje del terreno</td>
<td>Rebaje del terreno</td>
</tr>
<tr>
<td></td>
<td>Movimientos de tierras</td>
<td>Movimientos de tierras</td>
</tr>
<tr>
<td></td>
<td>Refuerzo de cimentaciones</td>
<td>Refuerzo de cimentaciones</td>
</tr>
<tr>
<td></td>
<td>Acopio de materiales para el recrecido apoyos</td>
<td>Acopio de materiales para el recrecido apoyos</td>
</tr>
<tr>
<td></td>
<td>Presencia acceso para mantenimiento</td>
<td>Presencia acceso para mantenimiento</td>
</tr>
<tr>
<td></td>
<td>Aumento de tensión en la línea</td>
<td>Aumento de tensión en la línea</td>
</tr>
<tr>
<td></td>
<td>Tránsito de vehículos para mantenimiento</td>
<td>Tránsito de vehículos para mantenimiento</td>
</tr>
</tbody>
</table>

PAISAJE
- Pérdida de hábitat
- Paisaje: Incremento de la visibilidad

SOCIOEC.
- Socioeconomía: Productividad y actividad econom.

TERRIT.
- Espacio Natural: Afección RN2000 y otros espacios
- Planeamiento: Afección a los suelos
- Montes y VVPP: Afección a Montes Públicos, Afección a Vías Pecuarias

CULTU.
- Patrimonio: Afección al Patrimonio Cultural
5.2.3. IMPORTANCIA Y MAGNITUD DE LOS IMPACTOS DE LAS ALTERNATIVAS

En este apartado se describe la importancia y se estima la magnitud de los impactos en los factores ambientales que se han considerado factores ambientales significativos para la valoración de alternativas: suelos, hidrología, exposición a campos electromagnéticos, vegetación y flora, hábitats de interés, fauna, paisaje, espacios naturales y uso forestal y pecuario. Destacar que en este apartado se hace una valoración del impacto en el caso de recrecido de los apoyos en los vanos en los que existe más de una alternativa viable. En la mayoría de las situaciones, existen dos alternativas: recrecer uno u otro apoyo de los dos que componen el vano. Es por ello que, se valoran los efectos en caso de recrecido (actuación Tipo 1) de cada uno de los dos apoyos existentes en cada vano. No obstante, es excepción, el vano 61-62, en los cuales se considera recrecer uno de los dos apoyos, el T-62, y como alternativa, el rebaje del terreno.

5.2.4. RESULTADOS DE LA VALORACIÓN AMBIENTAL DE LAS ALTERNATIVAS

En el apartado anterior, titulado 5.2.3 Importancia y magnitud de los impactos de las alternativas, se identificó la importancia y se cuantificó la magnitud de los impactos de los diferentes factores ambientales a través de indicadores de dicha magnitud, que pueden originarse como consecuencia de la ejecución y explotación de las alternativas, en cada uno de los vanos. En este apartado se calcula el impacto ambiental global de cada una de las alternativas, a partir de todos los factores ambientales estudiados, integrándolos en un único valor global. De esta manera, se obtendrá el valor de impacto global de las alternativas que constituyen cada uno de los trece vanos estudiados. Para este cálculo del valor global a partir de los valores de todos los factores ambientales se han realizado una estandarización y luego un promediado considerado el peso de cada factor. Básicamente, estas fases (ver tabla en la página siguiente):

- Con estas valoraciones de todos los factores ambientales, se elabora una matriz de cuantificación de la magnitud de impactos absoluta.
- Transformación de la matriz de cuantificación de impactos absoluta a una matriz de cuantificación de impactos relativa, expresando los valores absolutos como porcentaje respecto del valor de la alternativa que tiene el valor máximo para ese factor ambiental.
- Obtención un valor global ambiental de impacto para cada alternativa, asignando unos pesos (factor de multiplicación) a cada factor ambiental según su importancia, que permite una comparación de las distintas alternativas desde el punto de vista ambiental.

Los pesos asignados a los factores ambientales son:

<table>
<thead>
<tr>
<th>Factores</th>
<th>Pesos</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUELOS</td>
<td>0,8</td>
</tr>
<tr>
<td>HIDROLOGÍA</td>
<td>0,9</td>
</tr>
<tr>
<td>CEM</td>
<td>1</td>
</tr>
<tr>
<td>FLORA Y VEGETACIÓN</td>
<td>1,2</td>
</tr>
<tr>
<td>HICs</td>
<td>1,2</td>
</tr>
<tr>
<td>FAUNA</td>
<td>1</td>
</tr>
<tr>
<td>PAISAJE</td>
<td>0,9</td>
</tr>
<tr>
<td>ESPACIOS NATURALES PROTEGIDOS</td>
<td>1,2</td>
</tr>
<tr>
<td>MONTES Y VVPP</td>
<td>0,8</td>
</tr>
</tbody>
</table>

A continuación la tabla global (ver tabla siguiente).
Tabla 6. Matriz de impactos del valor global ambiental de impacto para cada alternativa. Se parte del valor relativo de impacto de la matriz anterior y se multiplica por el peso de cada factor ambiental según su importancia. En la columna final aparece el resultado de promediar todos los valores de cada factor ambiental, como valor de impacto global representativo de cada alternativa. En caso de haber diferencias mayores a 5 puntos se sombrea en naranja. En esos casos, la alternativa con menor valor de impacto se señala en verde para indicar que es la de menor impacto ambiental.

<table>
<thead>
<tr>
<th>Vano</th>
<th>Alternativa</th>
<th>Apoyo / Rebaje</th>
<th>Suelos</th>
<th>Hidrología</th>
<th>Exposición a CEM</th>
<th>Flora y vegetac.</th>
<th>HIs</th>
<th>Fauna</th>
<th>Paisaje</th>
<th>Espacios Naturales</th>
<th>Montes / VVPP</th>
<th>GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Importancia normalizada</td>
<td>0,8</td>
<td>0,9</td>
<td>1</td>
<td>1,2</td>
<td>1,2</td>
<td>1</td>
<td>0,9</td>
<td>1,2</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>T-4/T-5</td>
<td>A</td>
<td>4</td>
<td>2,0</td>
<td>12,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>18,5</td>
<td>90,0</td>
<td>0,0</td>
<td>11,4</td>
<td>14,9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5</td>
<td>2,0</td>
<td>12,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>18,5</td>
<td>83,4</td>
<td>0,0</td>
<td>11,4</td>
<td>14,2</td>
</tr>
<tr>
<td>T-5/T-6</td>
<td>A</td>
<td>5</td>
<td>2,0</td>
<td>12,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>18,5</td>
<td>83,4</td>
<td>0,0</td>
<td>11,4</td>
<td>14,2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>6</td>
<td>2,0</td>
<td>36,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>18,5</td>
<td>86,2</td>
<td>0,0</td>
<td>0,0</td>
<td>15,9</td>
</tr>
<tr>
<td>T-8/T-9</td>
<td>A</td>
<td>8</td>
<td>6,0</td>
<td>90,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>18,5</td>
<td>73,1</td>
<td>120,0</td>
<td>0,0</td>
<td>34,2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>9</td>
<td>2,0</td>
<td>66,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>18,5</td>
<td>64,4</td>
<td>0,0</td>
<td>0,0</td>
<td>16,8</td>
</tr>
<tr>
<td>T-9/T-10</td>
<td>A</td>
<td>9</td>
<td>2,0</td>
<td>66,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>18,5</td>
<td>64,4</td>
<td>0,0</td>
<td>0,0</td>
<td>16,8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>2,0</td>
<td>12,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>30,9</td>
<td>62,0</td>
<td>0,0</td>
<td>0,0</td>
<td>11,9</td>
</tr>
<tr>
<td>T-11/T-12</td>
<td>A</td>
<td>11</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>30,9</td>
<td>62,0</td>
<td>0,0</td>
<td>0,0</td>
<td>10,5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>12</td>
<td>6,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>60,7</td>
<td>65,9</td>
<td>0,0</td>
<td>0,0</td>
<td>14,7</td>
</tr>
<tr>
<td>T-13/T-14</td>
<td>A</td>
<td>13</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>60,7</td>
<td>75,2</td>
<td>0,0</td>
<td>0,0</td>
<td>15,3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>14</td>
<td>24,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>19,5</td>
<td>23,5</td>
<td>76,1</td>
<td>77,8</td>
<td>0,0</td>
<td>24,5</td>
</tr>
<tr>
<td>T-14/T-15</td>
<td>A</td>
<td>14</td>
<td>24,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>19,5</td>
<td>23,5</td>
<td>76,1</td>
<td>77,8</td>
<td>0,0</td>
<td>24,5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>15</td>
<td>2,0</td>
<td>42,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>91,6</td>
<td>66,3</td>
<td>0,0</td>
<td>0,0</td>
<td>22,4</td>
</tr>
<tr>
<td>T-52/T-53</td>
<td>A</td>
<td>52</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>6,2</td>
<td>24,5</td>
<td>0,0</td>
<td>45,7</td>
<td>8,5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>53</td>
<td>2,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>25,3</td>
<td>28,9</td>
<td>120,0</td>
<td>0,0</td>
<td>19,6</td>
</tr>
<tr>
<td>T-61/T-62</td>
<td>B</td>
<td>Re T-61/T-62</td>
<td>0,0</td>
<td>24,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>38,2</td>
<td>0,0</td>
<td>9,0</td>
<td>80,0</td>
<td>16,8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>62</td>
<td>6,0</td>
<td>6,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>69,1</td>
<td>45,7</td>
<td>22,2</td>
<td>80,0</td>
<td>25,4</td>
</tr>
<tr>
<td>T-65/T-66</td>
<td>A</td>
<td>65</td>
<td>6,0</td>
<td>36,0</td>
<td>0,0</td>
<td>120,0</td>
<td>120,0</td>
<td>100,0</td>
<td>43,5</td>
<td>120,0</td>
<td>80,0</td>
<td>69,5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>66</td>
<td>6,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>22,5</td>
<td>40,8</td>
<td>30,9</td>
<td>75,5</td>
<td>0,0</td>
<td>19,5</td>
</tr>
<tr>
<td>T-67/T-68</td>
<td>A</td>
<td>67</td>
<td>0,0</td>
<td>0,0</td>
<td>100,0</td>
<td>0,0</td>
<td>0,0</td>
<td>12,4</td>
<td>52,1</td>
<td>0,0</td>
<td>0,0</td>
<td>18,3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>68</td>
<td>0,0</td>
<td>0,0</td>
<td>75,7</td>
<td>0,0</td>
<td>0,0</td>
<td>12,4</td>
<td>52,2</td>
<td>0,0</td>
<td>0,0</td>
<td>15,6</td>
</tr>
<tr>
<td>T-68/T-69</td>
<td>A</td>
<td>68</td>
<td>0,0</td>
<td>0,0</td>
<td>75,7</td>
<td>0,0</td>
<td>0,0</td>
<td>12,4</td>
<td>52,2</td>
<td>0,0</td>
<td>0,0</td>
<td>15,6</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>69</td>
<td>0,0</td>
<td>0,0</td>
<td>84,0</td>
<td>0,0</td>
<td>0,0</td>
<td>12,4</td>
<td>47,3</td>
<td>0,0</td>
<td>0,0</td>
<td>16,0</td>
</tr>
<tr>
<td>T-69/T-70</td>
<td>A</td>
<td>69</td>
<td>0,0</td>
<td>0,0</td>
<td>84,0</td>
<td>0,0</td>
<td>0,0</td>
<td>12,4</td>
<td>47,3</td>
<td>0,0</td>
<td>0,0</td>
<td>16,0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>70</td>
<td>2,0</td>
<td>84,0</td>
<td>0,0</td>
<td>0,0</td>
<td>12,4</td>
<td>63,8</td>
<td>0,0</td>
<td>0,0</td>
<td>18,0</td>
<td></td>
</tr>
</tbody>
</table>
5.2.5. DISCUSIÓN E INTERPRETACIÓN DE LOS RESULTADOS OBTENIDOS EN LA VALORACIÓN AMBIENTAL GLOBAL

En la tabla anterior se han estimado los valores de impacto global de cada una de las dos alternativas que han sido valoradas en cada uno de los trece vanos analizados.

Se ha considerado que diferencias por debajo de cinco puntos son no significativas. Es por ello que, aquellos vanos en los que existe una diferencia menor a cinco puntos, indican que no habría diferencias en el impacto que ocasionarían entre ambas alternativas desde el punto de vista ambiental. Es decir, se consideran iguales desde el punto de vista de su impacto ambiental. Son todos aquellos vanos de la tabla anterior que no han sido sombreados.

Sin embargo, en los vanos en los que las alternativas han resultado con diferencias en el valor de impacto superiores a cinco puntos, interpretamos que hay una alternativa que es significativamente mejor que la otra desde el punto de vista ambiental. Estos vanos han sido notados con un sombreado naranja y el menor valor de impacto ambiental ha sido escrito en verde, indicando que es la alternativa de menor impacto ambiental.

Hay que tener en cuenta una particularidad de aquellos vanos adyacentes. Estos son los tres pares de vanos adyacentes siguientes:

- T-4/T-5 y T-5/T-6
- T-8/T-9 y T-9/T-10
- T-13/T-14 y T-14/T-15

En ellos hay que tener en cuenta que si se opta por la alternativa de recrecer el apoyo que se localiza en medio y que forma parte de los dos vanos adyacentes, evita el recrecido de dos apoyos. Es decir, el recrecido de un apoyo evita recrecer dos.

Esto implica que, en estos pares de vanos adyacentes las alternativas conjuntas a esos vanos sea: recrecer el apoyo situado en medio y que forma parte de los dos vanos adyacentes, evita el recrecido de dos apoyos. Es decir, el recrecido de un apoyo evita recrecer dos.

De esta manera en el caso de los vanos adyacentes T-4/T-5 y T-5/T-6, consideraríamos el valor de impacto de T-5: 14,2 y la suma de los valores de impacto de los apoyos T-4 + T-6, es decir 14,9 + 15,9 = 30,8. Así pues tenemos el impacto de T-5=14,2 frente al impacto de T-4+T-6=30,8. Por tanto, la diferencia entre ambas opciones es significativa, por lo que la mejor opción ambiental es el recrecido de T-5 y no T-4 y T-6.

De manera análoga en el caso de los vanos adyacentes T-8/T-9 y T-9/T-10, consideraríamos el valor de impacto de T-9: 16,8 y la suma de los valores de impacto de los apoyos T-8+T-10, es decir 34,2 + 11,9 = 46,1. Así pues tenemos el impacto de T-9=16,8 frente al impacto de T-8+T-10=46,1. Por tanto, de nuevo la diferencia entre ambas opciones es significativa, por lo que la mejor opción ambiental es el recrecido de un apoyo, el T-9 y no dos, el T-8 y el T-10.

Por último, en el caso de los vanos adyacentes T-13/T-14 y T-14/T-15, consideraríamos el valor de impacto de T-14: 24,5 y la suma de los valores de impacto de los apoyos T-13+T-15, es decir
15,3 + 22,4 = 37,7. Así pues tenemos el impacto de T-4 = 24,5 frente al impacto de T-13 + T-15 = 37,7. Por tanto, de nuevo la diferencia entre ambas opciones es significativa, por lo que la mejor opción ambiental es nuevamente el recrecido de un apoyo central, el T-14 y no los dos de los extremos, el T-13 y el T-15.

5.3. JUSTIFICACIÓN DE LA ALTERNATIVA SELECCIONADA

La alternativa seleccionada fruto del análisis ambiental se expone a continuación.

Los criterios a través de los cuales se seleccionan han sido expuestos a lo largo del capítulo 5.2 Valoración de la alternativa ambiental. La selección de la mejor alternativa para los casos en los que no existen diferencias significativas en el impacto ambiental (menor o igual a 5) se realiza bajo criterios técnicos.

Tabla 7. Alternativa seleccionada (en azul) y valor global.

<table>
<thead>
<tr>
<th>Vano</th>
<th>Alternativa</th>
<th>Apoyo / Rebaje</th>
<th>GLOBAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-4/T-5</td>
<td>A</td>
<td>4</td>
<td>14,9</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>5</td>
<td>14,2</td>
</tr>
<tr>
<td>T-5/T-6</td>
<td>A</td>
<td>5</td>
<td>14,2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>6</td>
<td>15,9</td>
</tr>
<tr>
<td>T-8/T-9</td>
<td>A</td>
<td>8</td>
<td>34,2</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>9</td>
<td>16,8</td>
</tr>
<tr>
<td>T-9/T-10</td>
<td>A</td>
<td>9</td>
<td>16,8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>10</td>
<td>11,9</td>
</tr>
<tr>
<td>T-11/T-12</td>
<td>A</td>
<td>11</td>
<td>10,5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>12</td>
<td>14,7</td>
</tr>
<tr>
<td>T-13/T-14</td>
<td>A</td>
<td>13</td>
<td>15,3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>14</td>
<td>24,5</td>
</tr>
<tr>
<td>T-14/T-15</td>
<td>A</td>
<td>14</td>
<td>24,5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>15</td>
<td>22,4</td>
</tr>
<tr>
<td>T-52/T-53</td>
<td>A</td>
<td>52</td>
<td>8,5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>53</td>
<td>19,6</td>
</tr>
<tr>
<td>T-61/T-62</td>
<td>B</td>
<td>Re T-61/T-62</td>
<td>16,8</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>62</td>
<td>25,4</td>
</tr>
<tr>
<td>T-65/T-66</td>
<td>A</td>
<td>65</td>
<td>69,5</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>66</td>
<td>19,5</td>
</tr>
<tr>
<td>T-67/T-68</td>
<td>A</td>
<td>67</td>
<td>18,3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>68</td>
<td>15,6</td>
</tr>
<tr>
<td>T-68/T-69</td>
<td>A</td>
<td>68</td>
<td>15,6</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>69</td>
<td>16,0</td>
</tr>
<tr>
<td>T-69/T-70</td>
<td>A</td>
<td>69</td>
<td>16,0</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>70</td>
<td>18,0</td>
</tr>
</tbody>
</table>

Modificación del proyecto

Tras el análisis ambiental de las alternativas, y su selección, se procede a la modificación o adaptación del proyecto técnico. Concretamente tras esta fase se selecciona/adapta el proyecto en:
- Se modifica recrecer el apoyo T-62 por rebajar el terreno (camino existente compuesto por excedente de excavación) en el vano T-61/T-62.
- Se elimina recrecer el apoyo T-65 por instalar contrapesos (actuación de tipología 2) y recrecer el apoyo T-66.
- Se instalan contrapesos en el apoyo T-67 y cadenas de suspensión doble para elevar la altura de los conductores.

6. IMPACTO EN LA ALTERNATIVA SELECCIONADA

En este apartado se incluyen los impactos en cada factor ambiental para cada uno de los apoyos y correspondientes accesos del proyecto, incorporando los que han resultado seleccionados tras el estudio de alternativas del apartado 5. Se añade a continuación el resultado final del análisis de alternativas desarrollado con las actuaciones propuestas a ejecutar.

Actuaciones Tipo 1:

- **Construcción de 5 nuevos apoyos:** T-0A, T-0B, T-00, T-77 y T-78 (aunque a efectos prácticos, desde un punto de vista de la incidencia paisajística, se puede considerar que los apoyos T-0A, T-77 y T-78 sustituyen a los T-0 SSR-FUE, T-27 LOE-PSF y T-28 LOE-PSF, respectivamente, ya que su ubicación es tan cercana que se pueden considerar como tal.)
- **13 apoyos a recrecer:** T-5, T-9, T-12, T-14, T-50, T-52, T-55, T-56, T-58, T-59, T-66, T-68 y T-70
- **7 apoyos a desmantelar:** T-0 SSR-LOE, T-0bis SSR-PSF, T-27 PSF-LOE, T-28 PSF-LOE, T-29 PSF-LOE, T-30 PSF-LOE y T-31 PSF-LOE
- **2 apoyos PAS:** T-42 y T-49.
- **1 apoyo con modificación de la geometría:** T-51

Tabla 8. Actuaciones de Tipo 1: nuevos apoyos, recrecidos, desmantelamientos, PAS y modificación de geometría

<table>
<thead>
<tr>
<th>Apoyo</th>
<th>Coordenadas UTM ETRS89 (H30)</th>
<th>Actuación</th>
<th>Altura del Recrecido (m)</th>
<th>Termino Municipal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coord. X (m)</td>
<td>Coord. Y (m)</td>
<td>Actuación</td>
<td></td>
</tr>
<tr>
<td>T-0 SSR-LOE</td>
<td>449576</td>
<td>4490571</td>
<td>A desmantelar</td>
<td>-</td>
</tr>
<tr>
<td>T-0A</td>
<td>449567</td>
<td>4490524</td>
<td>Nuevo apoyo</td>
<td>-</td>
</tr>
<tr>
<td>T-0B</td>
<td>449642</td>
<td>4490488</td>
<td>Nuevo apoyo</td>
<td>-</td>
</tr>
<tr>
<td>T-00 bis SSR-PSF</td>
<td>449774</td>
<td>4490702</td>
<td>A desmantelar</td>
<td>-</td>
</tr>
<tr>
<td>T-00</td>
<td>449773</td>
<td>4490706</td>
<td>Nuevo apoyo</td>
<td>-</td>
</tr>
<tr>
<td>T-05</td>
<td>451444</td>
<td>4490862</td>
<td>Recrecido</td>
<td>+6</td>
</tr>
<tr>
<td>T-09</td>
<td>452646</td>
<td>4490445</td>
<td>Recrecido</td>
<td>+4</td>
</tr>
<tr>
<td>T-12</td>
<td>453369</td>
<td>4489755</td>
<td>Recrecido</td>
<td>+5</td>
</tr>
<tr>
<td>T-14</td>
<td>453996</td>
<td>4489251</td>
<td>Recrecido</td>
<td>+4</td>
</tr>
</tbody>
</table>
Coordenadas UTM ETRS89 (H30) y Altura del Recrecido (m)

<table>
<thead>
<tr>
<th>Apoyo</th>
<th>Coord. X (m)</th>
<th>Coord. Y (m)</th>
<th>Actuación</th>
<th>Altura del Recrecido</th>
<th>Termino Municipal</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-42</td>
<td>455540</td>
<td>4480112</td>
<td>Adecuación apoyo PAS</td>
<td>-</td>
<td>San Fernando de Henares</td>
</tr>
<tr>
<td>T-49</td>
<td>456058</td>
<td>4478074</td>
<td>Adecuación apoyo PAS</td>
<td>-</td>
<td>San Fernando de Henares</td>
</tr>
<tr>
<td>T-50</td>
<td>456210</td>
<td>4477778</td>
<td>Recrecido</td>
<td>+6</td>
<td>San Fernando de Henares</td>
</tr>
<tr>
<td>T-51</td>
<td>456265</td>
<td>4477693</td>
<td>Modificación geometría</td>
<td>-</td>
<td>San Fernando de Henares</td>
</tr>
<tr>
<td>T-52</td>
<td>456354</td>
<td>4477553</td>
<td>Recrecido</td>
<td>+6</td>
<td>San Fernando de Henares</td>
</tr>
<tr>
<td>T-55</td>
<td>456970</td>
<td>4476787</td>
<td>Recrecido</td>
<td>+4</td>
<td>San Fernando de Henares</td>
</tr>
<tr>
<td>T-56</td>
<td>457260</td>
<td>4476561</td>
<td>Recrecido</td>
<td>+3</td>
<td>San Fernando de Henares</td>
</tr>
<tr>
<td>T-58</td>
<td>457794</td>
<td>4476146</td>
<td>Recrecido</td>
<td>+6</td>
<td>San Fernando de Henares</td>
</tr>
<tr>
<td>T-59</td>
<td>458057</td>
<td>4475941</td>
<td>Recrecido</td>
<td>+4</td>
<td>San Fernando de Henares</td>
</tr>
<tr>
<td>T-66</td>
<td>460232</td>
<td>4474248</td>
<td>Recrecido</td>
<td>+6</td>
<td>Mejorada del Campo</td>
</tr>
<tr>
<td>T-68</td>
<td>460822</td>
<td>4473789</td>
<td>Recrecido</td>
<td>+8</td>
<td>Mejorada del Campo</td>
</tr>
<tr>
<td>T-70</td>
<td>461379</td>
<td>4473356</td>
<td>Recrecido</td>
<td>+3</td>
<td>Mejorada del Campo</td>
</tr>
<tr>
<td>T-27 PSF-LOE</td>
<td>463697</td>
<td>4471563</td>
<td>A desmantelar</td>
<td>-</td>
<td>Loeches</td>
</tr>
<tr>
<td>T-77</td>
<td>463685</td>
<td>4471573</td>
<td>Nuevo apoyo</td>
<td>+3</td>
<td>Loeches</td>
</tr>
<tr>
<td>T-28 PSF-LOE</td>
<td>464009</td>
<td>4471324</td>
<td>A desmantelar</td>
<td>-</td>
<td>Loeches</td>
</tr>
<tr>
<td>T-78</td>
<td>464038</td>
<td>4471228</td>
<td>Nuevo apoyo</td>
<td>+30</td>
<td>Loeches</td>
</tr>
<tr>
<td>T-29 PSF-LOE</td>
<td>464272</td>
<td>4471121</td>
<td>A desmantelar</td>
<td>-</td>
<td>Loeches</td>
</tr>
<tr>
<td>T-30 PSF-LOE</td>
<td>464424</td>
<td>4471004</td>
<td>A desmantelar</td>
<td>-</td>
<td>Loeches</td>
</tr>
<tr>
<td>T-31 PSF-LOE</td>
<td>464517</td>
<td>4470841</td>
<td>A desmantelar</td>
<td>-</td>
<td>Loeches</td>
</tr>
</tbody>
</table>

Actuaciones Tipo 2: *Instalación de grapas y/o poleas y/o cadenas y/o contrapesos y/o cambio de conductor*

Por otro lado, los datos relevantes que han formado parte del análisis ambiental y que han sido condicionados por las características del Proyecto, son:

- El trazado de la LE no se modificará.
- No se va a ejecutar ningún acceso de nueva construcción.
- Prácticamente la totalidad de los accesos son caminos existentes en buen estado.
- Las actuaciones de los 34 apoyos de tipo 2 se realizarán con vehículo todoterreno y/o maquinaria ligera.
Lo más destacable es señalar que el proyecto técnico ha sido modificado con respecto a la versión anterior para lograr que la actuación que se ejecute sea la de menor impacto ambiental, tal y como se ha justificado en el capítulo 5.

6.1. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LOS SUELOS Y EL RELIEVE

Para la identificación de los posibles impactos potenciales en los suelos, se han distinguido las siguientes variables: 1) movimiento de tierras y 2) tipología de suelo.

Aclarar que los efectos aquí contemplados se han estudiado para todas las alternativas del proyecto consideradas como seleccionadas y para todas las demás actuaciones que constituyen el proyecto, es decir, las actuaciones del proyecto en su totalidad.

Movimiento de tierras

En esta variable, se estudian aquellos apoyos o accesos que requieren para llevar a cabo su actuación, el movimiento de tierras, bien en la campa de trabajo, o bien en el acceso. Las campas de trabajo difieren en su tamaño, tal y como se ha explicado anteriormente. Es aquí donde se incluye afección al suelo bajo cubierta vegetal tratado posteriormente.

Al tratarse de una línea existente, la gran mayoría de apoyos o accesos no requieren de una completa adaptación del terreno, ya que, ese trabajo ya está realizado y, por tanto, no existen efectos potenciales significativos. Pero en ciertos casos, se necesita una remodelación de pequeño calibre, que puede tener efectos en el suelo.

Los apoyos o accesos incluidos en la tabla son aquellos que cumplen alguna de las siguientes condiciones: requieren de actuación de tipo 1 y/o, el acceso requiere de acondicionamiento y/o, en el apoyo o en su acceso se realizan movimiento de tierras y/o, se afecta cierta superficie de suelo bajo cubierta vegetal.

Del total de apoyos, los movimientos de tierras afectan a T-14, T-PAS42, T-PAS49, Re T-61/T-62 y T-27 LOE-PSF, los caminos a acondicionar son los presentes en los mismos accesos que necesitan movimiento de tierras, incluyendo el apoyo T-77. Únicamente el Rebaje T-61/T-62 sufre una actuación de tipo 2, único apoyo de los incluidos en dicha actuación con efectos en la variable suelos.

Tipología de suelo

Para la variable tipología de suelo se han generado tres grupos de suelos en función de los efectos que supondría la alteración de estos: natural, cultivo y urbano, explicados anteriormente en el capítulo 5.

En el ámbito de estudio, un alto porcentaje de los apoyos se sitúan sobre terrenos de cultivo por lo que no existen en ellos efectos en el suelo. En los apoyos situados en las zonas de vegetación natural se deberá considerar los posibles efectos potenciales que puedan tener lugar. Se descarta por tanto, los efectos en esta variable en suelos clasificados como cultivos y urbanos.

Los apoyos o accesos incluidos en la tabla son aquellos que cumplen alguna de las siguientes condiciones: requieren de actuación de tipo 1 y/o, el acceso requiere de acondicionamiento y/o, en el apoyo o en su acceso se realizan movimiento de tierras y/o, se afecta cierta superficie de
suelo con cubierta vegetal. En el apartado de tipología de suelo se hará distinción entre urbano, cultivo y natural, generando así grandes grupos de suelos, facilitando su análisis.

Los apoyos y accesos que no tienen efectos significativos sobre los suelos no aparecen en esta tabla. Se observa que son la mayoría ya que muchos de los apoyos y sus accesos discurren mayoritariamente por zonas cultivadas o por zonas con suelos bajo vegetación natural por accesos en buen estado, no existiendo efectos sobre los suelos.

Las campas de trabajo ocupan 450 o 300 m² en función del tipo de actuación que se deba llevar en cada apoyo. La actuación del rebaje, se realizará desde el propio camino de acceso, para evitar afección a la vegetación de los márgenes de este. Es por ello que, aunque la actuación conlleva movimiento de tierras, no necesita campa de trabajo. De los apoyos de la tabla, un total de 6 apoyos se sitúan en suelo con cobertura natural, suelos bien desarrollados y conservados, 10 apoyos se sitúan en suelo cultivado, y los apoyos restantes se sitúan en suelo urbano.

Se trataría de un impacto negativo; de intensidad baja, localizado, directo; simple; temporal; reversible y recuperable. El impacto se clasifica como compatible.

6.2. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LA HIDROLOGÍA

Para la identificación de los posibles impactos potenciales en la vegetación y la flora, se han distinguido: 1) Distancia al curso de agua superficial; 2) Presencia del apoyo o su correspondiente acceso en zona de servidumbre o Zona de policía; y 3) Presencia del apoyo o acceso en zona de inundación.

Aclarar que los efectos aquí contemplados se han estudiado para todas las alternativas del proyecto consideradas como seleccionadas y para todas las demás actuaciones que constituyen el proyecto, es decir, las actuaciones del proyecto en su totalidad.

✔ Efectos potenciales en cursos de agua superficial

En el ámbito de estudio de localizan numerosos cursos fluviales, que en ocasiones se sitúan en el entorno inmediato de los apoyos y/o accesos, y que en ocasiones son sobrevolados o incluso cruzados. En el caso de los apoyos, la distancia a la que se encuentran de las masas de agua superficial es prudente, y es principalmente el trasiego de vehículos por los accesos, lo que implica los mayores efectos en la hidrología.

Se tendrá en cuenta que aquellos ríos, barrancos o arroyos situados a una distancia superior de 300 metros del apoyo o de su correspondiente acceso, no supondrán efectos esperados sobre la hidrología.

Debido al trabajo de campo realizado con el fin de determinar aquellos accesos con mejorar características desde el punto de vista ambiental, y debido al buen estado de los mismos, los efectos potenciales se reducen al máximo, no siendo significativos los efectos soportados sobre los cursos fluviales

La estimación de los potenciales efectos a dichos cursos fluviales se expone en la tabla siguiente (para mejor entendimiento, se ha elaborado una tabla conjunta con las variables estudiadas de hidrología).
Los apoyos y accesos que no tienen efectos significativos sobre la vegetación natural no aparecen en esta tabla. Se observa que son la mayoría ya que muchos de los apoyos discurren por zonas elevadas, alejadas de la llanura aluvial, y que coinciden en ocasiones con los puntos más altos de cerros y pequeñas ondulaciones del terreno de cota más elevada a los cauces hidrológicos fluviales.

Las zonas de la línea donde los apoyos se sitúan más próximos a los cursos de agua superficial se concentran en la zona de cruce del trazado con el río Jarama entre los apoyos T-06 y T-07, los cruces del trazado con el Arroyo de la Fuente de la Teja y el Barranco de la Viña y, en el tramo final, el cruce con el Arroyo de Pantueña.

Efectos potenciales en zonas de DPH (Zona de Servidumbre y Zona de Policía)

El Dominio Público Hidráulico está constituido por el conjunto de bienes hidráulicos que, siendo propiedad de un ente público, están afectando a un uso público. Este incluye entre otros, los cauces de corrientes naturales, continuas y discontinuas y los lechos de lagos, lagunas y embalses superficiales, en cauces públicos. El espacio que queda junto al cauce se clasifica en dos zonas según su anchura. Los primeros 5 metros se clasifican como Zona de servidumbre, reservada para usos de vigilancia, pesca y salvamento; y los 100 primeros metros, incluyendo el anterior, se clasifica como Zona de policía, donde se condiciona el uso del suelo y las actividades que en ella se realizan.

Más de la mitad de los apoyos o los accesos representados en la tabla siguiente se encuentran en Zona de servidumbre y/o Zona de policía. Los accesos que comparten por un lado los apoyos T-25 y T-26 y, por otro lado, el que comparten los apoyos T-15 y T-18, así como los accesos de los apoyos T-19 y T-76, se encuentran en alguna zona de su trayecto, cruzando el cauce, y por tanto en zona de servidumbre. Por ello, la mayor zona ocupada con el trazado en Dominio Público Hidráulico es la zona donde se sitúan los apoyos T-15, T-18, T-19, T-26 y T-25.

La estimación de los potenciales efectos a dichos cursos fluviales se expone en la tabla siguiente (para mejor entendimiento, se ha elaborado una tabla conjunta con las variables estudiadas de hidrología).

Importancia de curso fluvial objeto de estudio en anteriores variables

El trazado de la línea eléctrica discurre de forma mayoritaria por el valle del río Jarama, o por sus inmediaciones, alejándose en el tramo final para cruzar el valle del río Henares. A lo largo del trazado eléctrico, son varios cursos de agua los que aparecen localizados en los márgenes, a modo de afluentes de los ríos Jarama y Henares.

Aproximadamente un 30 % de los apoyos que se encuentran a menos de 300 metros de algunos de los cursos fluviales del ámbito de estudio, se localizan junto a uno de los dos ríos de importancia intermedia, Jarama y Henares.

Los apoyos representados en la tabla anterior son todos de tipo 2, a excepción del T-PAS 42, el cual tiene una actuación de paso aéreo a subterráneo. Al tratarse de una actuación de tipo 1, el tránsito de la maquinaria será de mayor grado, con una tipología de maquinaria de más volumen y mayor peso, que podrá influir y generar efectos de mayor grado que en el caso de otros tipos de actuación.

Presencia del apoyo en zona de inundación
En el ámbito de estudio discurren dos ríos de importancia intermedia, cuyos caudales pueden adquirir unas dimensiones que conviene tener en cuenta en la prevención de riesgos ante inundaciones, ya que pueden existir zonas del cauce que pueden producir inundaciones en épocas de crecida. Es por ello, que se han evaluado estas zonas para diferentes periodos de tiempo, 10, 50, 100 y 500 años, asegurándonos con este último el mayor de los riesgos que pudiera suceder.

En la siguiente tabla se muestran aquellos apoyos o accesos que se sitúan en dichas zonas de inundación. En el caso en el que un apoyo o su acceso apareciesen en ZI en más de uno de los períodos estudiados, se pondrá el de menor cantidad de años, debido que, en un periodo más corto, será mayor el riesgo de que se produzca una inundación. Que un apoyo aparezca en el periodo de 10 años, indica que también lo hará en los demás períodos de mayor temporalidad.

El apoyo y acceso que corre mayor riesgo de inundación es el T-07, el cual se sitúa en el entorno inmediato del río Jarama, río de gran caudal que en épocas de lluvias y en caso de inundación, ampliaría su cauce normal, sufriendo las consecuencias las infraestructuras en el entorno inmediato de este.

Se trataría de un impacto negativo; de intensidad baja, localizado, directo; simple; temporal; reversible y recuperable. El impacto se clasifica como compatible.

6.3. EFECTOS DE LA ALTERNATIVA SELECCIONADA EN LA CALIDAD ACÚSTICA

En este apartado distinguimos el ruido ocasionados por la fase de construcción y el ruido en funcionamiento por el efecto corona, así como el producido por el viento.

6.3.1. RUIDO EN FASE DE CONSTRUCCIÓN

En relación con la contaminación acústica asociada a la fase de construcción del proyecto, el análisis debe realizarse atendiendo a los efectos puntuales y temporales asociados al funcionamiento de la maquinaria. En la construcción intervendrá maquinaria de obras públicas emisora de elevados niveles sonoros, estimados entre 70 y 90 dB (A). El funcionamiento de la maquinaria queda condicionado por las siguientes directrices:

- Los períodos de trabajo con maquinaria pesada se realizarán en período diurno, evitando los trabajos nocturnos, que generarían mayor impacto dada la sensibilidad acústica de la noche.

- La maquinaria empleada deberá cumplir con lo establecido en el Real Decreto 212/2002, de 22 de febrero, por el que se regulan las emisiones sonoras en el entorno debidas a determinadas máquinas de uso al aire libre.

- La maquinaria empleada deberá cumplir con lo establecido en su marcado CE y tener en vigor su ITV.

Teniendo en cuenta las condiciones de trabajo de la maquinaria, principalmente el período de trabajo y el cumplimiento de lo establecido en el RD 2012/2002, y que las actuaciones que generan emisiones acústicas durarán unos 10 días discontinuos por apoyo, se considera que la afección acústica durante la ejecución de los trabajos es compatible.

6.3.2. RUIDO OCASIONADO POR EL FUNCIONAMIENTO DE LA LÍNEA ELÉCTRICA

Por lo que se refiere a las emisiones de ruido de las líneas eléctricas, estas pueden ser de dos tipos: efecto corona y ruido eólico.
El efecto corona se genera cuando el conductor adquiere un potencial suficientemente elevado para dar lugar a un campo eléctrico radial, produciéndose así corrientes de fuga de los conductores; parte de la energía disipada lo hace de forma audible (también forma un halo luminoso), consistente en un zumbido de baja frecuencia (100 MHz) y baja intensidad (entre 10 y 50 dB). Las pequeñas irregularidades que se generan en la superficie de los conductores, por acumulación de partículas, polvo, contaminación y condensación de gotas de agua, favorecen que en esos puntos se eleve el potencial.

Por otro lado, la oposición de los elementos de las líneas al paso del viento puede ser una fuente significativa de ruido en puntos en los que el viento es frecuente e intenso. Este ruido eólico es difícil de predecir por su naturaleza y ocurre con cierta frecuencia. En función de la naturaleza del viento pueden alcanzarse niveles sonoros de más de 50 dB, aunque al ser una fuente natural la que lo genera, suele tener mejor aceptación por la población que aquellos que tienen lugar a partir de una fuente artificial.

Cuando la humedad relativa es elevada y especialmente durante los episodios de lluvias, el efecto corona se vuelve más intenso, situación que da lugar al máximo de emisión sonora. Sin embargo, generalmente queda enmascarado por la misma lluvia, que provoca un nivel acústico superior. En condiciones de niebla, con las que se podría percibir el ruido con mayor facilidad, la existencia de ésta frena la propagación del ruido, es decir, el nivel sonoro es más intenso en el entorno inmediato de las líneas, pero se deja de percibir a menor distancia.

Matizando los datos anteriores, cabe mencionar que, en condiciones de lluvia ligera, el valor estimado del nivel sonoro a 15, 30, 50 y 100 metros del plano medio de las líneas no sobrepasa los 46, 45, 43 y 38 dB(A), respectivamente. En condiciones de lluvia fuerte estos valores se verían incrementados en unos 5 dB(A) aproximadamente, aunque en este caso el propio ruido de la lluvia anularía la percepción del ruido producido por el efecto corona.

Comparando los niveles de emisión estimados con los niveles de ruido de fondo, se encuentra que son muy similares, con escasa capacidad para modificarlos por las líneas proyectadas y, con unos niveles de ruido ambientales finales prácticamente inalterados.

Por su parte, como se demuestra en el Apéndice III del Anexo IV: Estudio de impacto en la salud del estudio de impacto ambiental, se producen pérdidas por efecto corona y ruido como consecuencia del cambio de tensión a 400kV.

Otro de los parámetros que condiciona la potencia acústica es la geometría de la línea (posición y altura de los conductores) la cual, si va a variar ligeramente con el recrecido de los apoyos, lo que supone el aumento de la altura del tendido y, con ello, una mínima disminución del nivel de emisión bajo la línea (en torno a 1dB).

Se trataría de un impacto negativo; de intensidad baja, localizado, directo; simple; temporal; reversible y recuperable. El impacto se clasifica como compatible.

6.4. EFECTOS DE LA ALTERNATIVA SELECCIONADA POR LA PRESENCIA DE CAMPOS ELECTROMAGNÉTICOS

La información detallada de los impactos que es expone en este apartado se encuentra desarrollada en el Anexo IV: Estudio de impacto en la salud del estudio de impacto ambiental. Evaluación de los posibles impactos por exposición a campos electromagnéticos.
6.4.1. VALORES DE CAMPO MAGNÉTICO Y ELÉCTRICO MÁXIMOS EN LA LÍNEA OBJETO DEL PROYECTO

Se presenta información detallada en el Apéndice III del citado Anexo IV incluyendo datos obtenidos a partir de mediciones realizadas mediante una aplicación de cálculo de campos eléctricos y magnéticos desarrollada en el Departamento de Diseño de REE, existiendo información.

El valor máximo del campo magnético se encuentra en el eje de la línea, disminuyendo considerablemente a medida que aumenta la distancia a la línea.

El campo eléctrico se calcula a 1 metro de altura sobre el terreno, considerando el conductor recto e infinito. El campo eléctrico depende fundamentalmente de la tensión de la línea y de la distancia de los conductores al terreno.

6.4.2. ANÁLISIS DE LAS ALTERNATIVAS DE LAS ZONAS URBANIZADAS SOBREVOLADAS POR LA LÍNEA ELÉCTRICA

Siguiendo lo prescrito en la Resolución de 21 de febrero, se ha realizado un estudio de alternativas para mejorar la situación respecto a la exposición a campos electromagnéticos de las zonas urbanizadas sobrevoladas por la línea eléctrica en las urbanizaciones de El Balcón-Villaflores-El Tallar, en Mejorada del Campo y el Colegio Monfort en Loeches.

6.4.2.1. URBANIZACIONES DE EL BALCÓN-VILLAFLORES-EL TALLAR

En primer lugar, indicar que a pesar de ser urbanizaciones que se desarrollaron después de la línea existente y sin un marco legal urbanístico aprobado en la actualidad, REE tiene la intención de mejorar la situación de la población que reside en estas urbanizaciones.

Actualmente, REE ha descartado la posibilidad de alternativas de trazado ya que no existe un pasillo viable por donde trazarlo sin que los efectos a otras poblaciones o infraestructuras resulten aún más perjudiciales.

Asimismo, también han sido descartadas alternativas que incluyeran el soterramiento ya que estas soluciones, a pesar del beneficio que supone a nivel de avifauna y paisajística, tienen como desventaja un aumento de las intensidades de los campos electromagnéticos para la población bajo la que se ubican, pudiendo multiplicar por cuatro la intensidad de campo recibido.

No obstante, REE plantea en el presente proyecto una solución que disminuye significativamente la exposición del proyecto actual a los campos electromagnéticos. Esta solución consiste en el recrecido de tres apoyos: recrecido de 6m en el apoyo T-66; 7m en el apoyo T-68 y 3m en el apoyo T-70. De esta manera, en la situación futura una vez que se ejecutara el proyecto, los conductores quedarían a mayor distancia respecto del suelo y, por tanto, se reduciría la exposición de la población a los campos electromagnéticos.

- Análisis del campo magnético en el tramo entre el apoyo T-66 y T-70

En la tabla siguiente se muestra para cada situación el valor de campo magnético máximo a 1 m sobre el nivel del terreno para la carga nominal y para una carga típica del 30%.

<table>
<thead>
<tr>
<th>Carga (% nominal)</th>
<th>CM situación actual</th>
<th>CM situación futura</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 %</td>
<td>8,62 µT</td>
<td>9,40 µT</td>
</tr>
<tr>
<td>30 %</td>
<td>2,59 µT</td>
<td>2,82 µT</td>
</tr>
</tbody>
</table>
Estos valores resultan muy inferiores al valor de referencia de 100 µT establecido en el RD 1066/2001.

- Análisis del campo eléctrico en el tramo entre el apoyo T-66 y T-70

La tensión de la línea se modifica de 220kV a 400kV. Para el caso concreto del tramo entre el apoyo T-66 y el apoyo T-70, debido a la mayor sensibilidad de esta zona urbanizada, se ha realizado un cálculo de la distancia media desde el conductor al terreno (ver Apéndice III del Estudio de impacto de la salud).

La distancia media al terreno se aumenta de 15,91m en la situación actual a 18,18m en la situación futura que contempla el presente proyecto (ver tabla a continuación). De esta manera, en la situación futura el valor del campo eléctrico queda por debajo del valor de referencia establecido en el RD 1066/2001, de 5 kV/m, alcanzando el valor máximo a un metro de altura sobre el terreno de 1,97 kV/m para la tensión de 220kV y de 2,92 kV/m para la tensión de 400kV.

Tabla 10. Distancias media entre conductor y terreno en el tramo entre el apoyo T-66 y T-70. La altura media del conductor-terreno se ha calculado midiendo cada 50m la distancia vertical del conductor al terreno en hipótesis de flecha máxima y calculando el valor medio de todas las distancias verticales en el tramo 66-70. En la situación futura se han considerado los recrecidos que contempla el presente proyecto: apoyo T-66: recrecido de 6m); apoyo T-68 (recrecido de 7m) y apoyo T-70 (recrecido de 3m). (Tabla fuente en Anexo II del Apéndice III del Estudio de impacto de la salud).

<table>
<thead>
<tr>
<th>Longitud vano (m)</th>
<th>Apoyo Inicio</th>
<th>Apoyo Final</th>
<th>Distancia a Apoyo Inicio (m)</th>
<th>Distancia Vertical Conductor-Terreno (m)</th>
<th>Apoyo Inicio</th>
<th>Apoyo Final</th>
<th>Distancia a Apoyo Inicio (m)</th>
<th>Distancia Vertical Conductor-Terreno (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>424</td>
<td>T66</td>
<td>T67</td>
<td>50</td>
<td>22.85</td>
<td>T66-REC+6M</td>
<td>67</td>
<td>50</td>
<td>28.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>21.19</td>
<td></td>
<td></td>
<td>100</td>
<td>25.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>20.12</td>
<td></td>
<td></td>
<td>150</td>
<td>23.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>18.25</td>
<td></td>
<td></td>
<td>200</td>
<td>21.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>18.36</td>
<td></td>
<td></td>
<td>250</td>
<td>20.79</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>19.18</td>
<td></td>
<td></td>
<td>300</td>
<td>20.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td>20.01</td>
<td></td>
<td></td>
<td>350</td>
<td>21.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>400</td>
<td>22.12</td>
<td></td>
<td></td>
<td>400</td>
<td>22.31</td>
</tr>
<tr>
<td>323</td>
<td>T67</td>
<td>T68</td>
<td>50</td>
<td>20.28</td>
<td>T67-REC+7M</td>
<td>67</td>
<td>50</td>
<td>20.82</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>16.65</td>
<td></td>
<td></td>
<td>100</td>
<td>18.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>12.98</td>
<td></td>
<td></td>
<td>150</td>
<td>15.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>11.71</td>
<td></td>
<td></td>
<td>200</td>
<td>15.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>11.27</td>
<td></td>
<td></td>
<td>250</td>
<td>16.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>14.22</td>
<td></td>
<td></td>
<td>300</td>
<td>19.4</td>
</tr>
<tr>
<td>333</td>
<td>T68</td>
<td>T69</td>
<td>50</td>
<td>11.85</td>
<td>T68-REC+8M</td>
<td>67</td>
<td>50</td>
<td>17.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>11.04</td>
<td></td>
<td></td>
<td>100</td>
<td>15.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>12.51</td>
<td></td>
<td></td>
<td>150</td>
<td>15.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>10.5</td>
<td></td>
<td></td>
<td>200</td>
<td>12.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>10.2</td>
<td></td>
<td></td>
<td>250</td>
<td>11.37</td>
</tr>
<tr>
<td>373</td>
<td>T69</td>
<td>T70</td>
<td>50</td>
<td>20.57</td>
<td>T69</td>
<td>67</td>
<td>50</td>
<td>20.48</td>
</tr>
</tbody>
</table>
6.4.2.2. COLEGIO MONFORT

En el caso de la exposición del proyecto actual a los campos electromagnéticos en la zona del Colegio Monfort existe una alternativa de trazado viable que permite el alejamiento de los conductores al citado centro educativo.

Esta nueva alternativa de trazado implica desmantelar 4 apoyos de la línea actual: 28 PSF-LOE, 29 PSF-LOE, 30 PSF-LOE y 31 PSF-LOE y la construcción de dos apoyos nuevos: el T-77 y el T-78, para ya enlazar con la Subestación de Loeches.

Con la modificación del trazado se obtendrían las siguientes mejoras desde el punto de vista de la exposición de los campos electromagnéticos:

- El trazado de la línea futura se alejaría al menos 110m de la instalación deportiva recreativa más cercana, en concreto la piscina. Sin embargo, la línea actual se localiza a escaso 10-12m de la vertical de la citada piscina y sobrevuela una esquina de las pistas deportivas.
- El trazado de la línea futura se alejaría al menos 170m de los edificios que albergan aulas y actividades educativas, mientras que la línea actual discurre a unos 60m de dichos edificios.

Así pues, el nuevo trazado supone, además de la liberación de espacio y el beneficio paisajístico para los usuarios del colegio, alejar a más de 100m el tendido, garantizando que no exista ningún efecto ocasionado por los campos electromagnéticos.

6.4.3. COMPARACIÓN ENTRE LOS NIVELES ESTIMADOS Y LOS NIVELES DE REFERENCIA

Teniendo en cuenta lo indicado anteriormente por el Consejo de la Unión Europea, que recomienda como niveles de referencia para el campo electromagnético de 50 Hz: 5 kV/m para el campo eléctrico y 100 μT para el campo magnético, y considerando los datos de la tabla anterior relativas mediciones realizadas en líneas de REE de 400kV, podemos extraer que:

- Las líneas eléctricas aéreas de 400kV, como la línea objeto del presente proyecto arrojan unos máximos de campo magnético en el punto más cercano a los conductores de 9,40μT, muy inferiores a los niveles de referencia de 100μT establecido en el RD 1066/2001, y más aún respecto a los 200μT, considerados en la revisión de ICNIRP de 2016.
• Considerando el tramo de mayor sensibilidad, entre el apoyo T-67 y T-70, la distancia media al terreno aumenta de 15,91m en la situación actual a 18,18m por el recrecido de los apoyos en la situación futura una vez se ejecutara el proyecto. En estas condiciones el valor del campo eléctrico queda por debajo del valor de referencia establecido en el RD 1066/2001, de 5 kV/m, alcanzando el valor máximo a un metro de altura sobre el terreno de 1,97 kV/m para la tensión de 220kV (situación actual, es decir sin la ejecución del proyecto) y de 2,92 kV/m para la tensión de 400kV (situación futura una vez se ejecutara el proyecto).

Asimismo, hay que tener en cuenta que, el campo eléctrico es detenido por paredes y techos, por lo que sería prácticamente nulo en el interior de un inmueble localizado en esa posición.

6.4.4. CARACTERIZACIÓN DEL IMPACTO POR PRESENCIA DE CAMPOS ELECTROMAGNÉTICOS

Se tratará de un impacto negativo, de intensidad baja, local, directo, simple, temporal, reversible y recuperable. La clasificación del impacto es compatible.

6.5. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LA VEGETACIÓN Y LA FLORA

Para la identificación de los posibles impactos potenciales en la vegetación y la flora, se han distinguido: 1) efectos en las poblaciones de flora amenazada; 2) efectos en la vegetación leñosa; 3) efectos en pies arbóreos afectados.

Aclarar que los efectos aquí contemplados se han estudiado para todas las actuaciones del proyecto en su totalidad. Toda la información detallada está en el Anexo V relativo a hábitats y a flora del estudio de impacto ambiental.

Los impactos potenciales que conlleva el proyecto sobre la vegetación y la flora se producirán en fase de construcción, ocasionados principalmente por el transporte de materiales hasta la base de los apoyos y la ocupación de la maquinaria. A este respecto, aclarar que en el caso de los trabajos a desarrollar en los apoyos con actuaciones de tipo 2, dado lo poco impactante de los trabajos que incluyen estas actuaciones, existirá una diferencia muy significativa en los efectos potenciales en comparación con las actuaciones de tipo 1.

Así pues, los posibles efectos sobre la vegetación y la flora en las actuaciones de tipo 1 serán:

• Degradación del estrato herbáceo y arbustivo por compactación del suelo producido por el paso de maquinaria pesada por accesos de tipología campo a través o por adecuación del terreno en caminos a acondicionar
• Desbroce o eliminación de la vegetación para el establecimiento de la campa.
• Afección a pies arbóreos (tala o poda) para el acondicionamiento del acceso y de la campa.
• Efectos sobre poblaciones de especies de flora protegida.

Mientras que en las actuaciones de tipo 2, tan sólo se contemplan los siguientes efectos:

• Degradación del estrato herbácea y arbustiva por compactación del suelo o por alteración directa de la vegetación, producida por el tránsito de vehículos ligeros en accesos campo
a través o en la zona de trabajo, o por el movimiento necesario de los operarios en la zona de trabajo.

6.5.1. Síntesis del impacto en la vegetación y la flora

Respecto a la presencia de especies, se constata la presencia de especies de flora amenazada, tal como afirma MAPAMA en su Resolución. En concreto, han aparecido 3 de las 5 citadas: *Cynara tournefortii*, *Malvella sherardiana* y *Glycyrrhiza glabra*. Sin embargo, no se ha detectado la presencia de *Nepeta hispanica* ni *Flueggea tinctoria* en los apoyos, ni en sus correspondientes accesos.

Con respecto a *Cynara tournefortii* podemos afirmar que:

- Se constata la presencia de *Cynara tournefortii* en torno al apoyo T-42 y su acceso. Su cobertura es elevada, siendo dominante alrededor del apoyo.
- Debido a la presencia de *Cynara tournefortii* y al tipo de actuación necesaria en el apoyo T-42, en el cual la línea pasa de aérea a subterránea, existirán efectos significativos en una superficie total aproximada de 475m² localizados en los últimos metros de acceso y en la campa de trabajo.
- Además, también se encuentra presente puntualmente en el acceso al apoyo T-38, aunque en este caso no hay ningún efecto ya que los ejemplares hallados se encuentran cercano a un camino de acceso en perfectas condiciones, por lo no habrá impacto alguno en dichos individuos, siempre y cuando se respete el camino de acceso y los vehículos no salgan en ningún caso de dichos accesos y de la zona de trabajo junto al apoyo.
- En los apoyos T-39 y T-41 también fue identificada su presencia con carácter puntual, restringiéndose a una pequeña tesela. Estos datos revelan que existe presencia de *Cynara tournefortii* en otros emplazamientos próximos y que no sólo se restringe al apoyo T-42. No obstante, de cara al proyecto no tiene repercusión alguna, ya que en los apoyos T-39 y T-41 no hay proyectadas ninguna actuación.

Respecto a *Malvella sherardiana*:

- Se constata la presencia de *Malvella sherardiana* en el entorno del apoyo T-42. Su presencia es puntual y escasa, hasta el punto de que sólo fueron encontrados dos ejemplares en la prospección, localizados a 10-12m de la base del apoyo, no descartando la existencia de más individuos en un entorno próximo.

Respecto a *Glycyrrhiza glabra*:

- Se ha constatado la presencia de *Glycyrrhiza glabra* en el entorno de los apoyos T-63, T-64 y T-65, siendo muy abundante en T-64.
- El carácter de la actuación en esos apoyos sólo requiere la presencia de vehículos ligeros y no necesita de una campa de trabajo nivelada para el montaje de grúas. Además, el bajo grado de amenaza de *Glycyrrhiza glabra* es bajo y tiene gran capacidad de respuesta ante afecciones en su parte aérea. Por estos motivos, consideramos que los efectos en ningún caso serán significativos y tendrán tan sólo un carácter temporal.

A continuación se presenta una síntesis de los efectos en la flora amenazada, los cuales sólo serán significativos en torno al apoyo T-42.
Tabla 11. Síntesis de los potenciales efectos en la flora amenazada.

<table>
<thead>
<tr>
<th>Apoyo/ acceso</th>
<th>Especies</th>
<th>Acciones</th>
<th>Descripción de los potenciales efectos</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-42</td>
<td>Cynara tournefortii y Malvella sherardiana</td>
<td>TIPO 1</td>
<td>Efectos directos en 450m² en la zona de campa y 25m² en la zona del acceso. En total, 475m². También presencia de dos individuos de Malvella sherardiana, a 10-15m del apoyo, que también serían afectados.</td>
</tr>
<tr>
<td>T-63</td>
<td>Glycyrrhiza glabra</td>
<td>TIPO 2</td>
<td>Tránsito campo a través de 50m en vehículo ligero, tipo todoterreno o pick-up, y el trasiego de operarios.</td>
</tr>
<tr>
<td>T-64</td>
<td>Glycyrrhiza glabra</td>
<td>TIPO 2</td>
<td>Estacionamiento de vehículo ligero junto a la base y la actividad de los operarios entre el camino y el apoyo.</td>
</tr>
<tr>
<td>T-65</td>
<td>Glycyrrhiza glabra</td>
<td>TIPO 2</td>
<td>Tránsito campo a través de 80m en vehículo ligero y el trasiego de operarios en la zona de trabajo.</td>
</tr>
</tbody>
</table>

6.5.2. Caracterización del impacto en la vegetación y la flora

Destaca el impacto en la flora, en particular la población de *Cynara tournefortii*, que sufre impactos significativos en el entorno del apoyo T-42, por lo que la magnitud del impacto sobre esta especie es elevada.

En el global del impacto del proyecto, los atributos de importancia de los efectos en la vegetación y la flora son de signo negativo, intensidad de media, de extensión parcial, directo, simple, temporal; reversible y recuperable. Por todo ello, el impacto global en la vegetación se clasifica como moderado.

6.6. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LOS HÁBITATS

Al igual que con la vegetación arbustiva y arbórea afectada, para cada uno de los accesos de los apoyos con actuación se ha realizado una visita de campo definiendo el acceso sobre caminos que atraviesan la menor superficie posible en zonas con presencia de Hábitats de Interés Comunitario (HICs).

6.6.1. Efectos potenciales de la alternativa seleccionada en los HICs

En el apartado de inventario se incluye una relación de apoyos y accesos en los que se constata la presencia real de HICs (ver apartado 5.2.3.5 y Anexo V del EsIA). En el Anexo V, se ha hecho un análisis detallado de los efectos sobre HICs, la cual se resume a continuación.

6.6.2. Síntesis de los efectos potenciales de la alternativa seleccionada en los HICs

Respecto de los hábitats de interés comunitario, la prospección de todos los apoyos y accesos tuvo como primer objetivo comprobar la presencia real a la escala de trabajo y, en su caso, potencial afección a los hábitats de interés comunitario (HIC).

En la mayor parte de las ocasiones se observó en campo la presencia real de los HICs ya reflejados en la cartografía oficial. En otras ocasiones, se comprobó que no había hábitats en zonas cartografiadas oficialmente como tal. Bien fuera por error en la ubicación geográfica de las teselas, o bien por degradación posterior de las comunidades vegetales.
Por el contrario, también existen zonas que no estaban consideradas como hábitat en la cartografía oficial, pero que, sin embargo, sí hay presencia de los mismos, como es el caso de los tarayales en terrazas adyacentes a la ribera del río Henares.

En base a estas comprobaciones, a continuación se relacionan las conclusiones respecto a los efectos del proyecto sobre los HICs realmente presentes:

- Con respecto a los efectos en el HIC no prioritario 5330 Matorrales termomediterráneos y pre-estépicos, de la *Genistro scorpii-Retametum sphaerocarpeae*, correspondiente a matorrales basófilos manchegos con aulaga y retama y en el HIC 1430-Matorrales halonitrófilos (*Peganeto-Salsoletea*), de la *Salsolo vermiculatae-Peganetum harmalaee*, correspondiente a matorrales nitrófilos de caramillo:
 - Los efectos en estos HICs son 75m² ocasionados por el acceso y en la campa de apoyo T-14 y un tránsito con todoterreno de 227m en el apoyo T-26.
 - Dada la poca entidad de los efectos, en ambos casos pueden calificarse como no significativos, especialmente considerando que este HICs está muy extendido en el territorio y sin problemas aparentes de conservación.

- Con respecto a los efectos en el HIC no prioritario 92D0- Galerías y matorrales ribereños termomediterráneos (*Nerio-Tamaricetea* y *Securinegion tinctoriae*), correspondiente al subtipo tarayales de la *Tamaricetum gallicae*:
 - Los efectos en estos HICs están ocasionados por el tránsito con todoterreno por los caminos de acceso a los apoyos T-64 y T-65 a lo largo de 12m y 80m, respectivamente.
 - El hábitat del tarayal de los apoyos T-64 y T-65 se encuentra en buen estado, especialmente el del apoyo T-65. Asimismo, en los sotos de ambos emplazamientos más el del T-63, se desarrollan poblaciones de *Glycyrrhiza glabra*.
 - Debido a que el tránsito con todoterreno es una acción temporal y que no implica desbroce de la vegetación, pueden calificarse como no significativos.

- Con respecto a los efectos en el HIC 6220* Zonas subestépicas de gramíneas y anuales del Thero-Brachypodietea, correspondiente a pastizales xerófíticos mediterráneos de vivaces y anuales:
 - El efecto a este HIC se produce en el apoyo T-66 por desbroce en la zona de la campa de 75m².
 - Este HIC 6220* se corresponde en este emplazamiento con un pasto seco con esparto, el cual está muy extendido en el territorio y sin problemas aparentes de conservación. Considerando la pequeña extensión del desbroce y el grado de representación del HIC en el territorio, el efecto se estima como no significativo.
 - También existen efectos en los apoyos T-28 PSF LOE y T-75, como se recoge en el punto siguiente, pero dado que en la zona de esas actuaciones tienen tan sólo un 5% de representación en el conjunto de la tesela, no se consideran los efectos como significativos.

- Con respecto a los efectos en el HIC 1520* Vegetación gipsícola ibérica (*Gypsophiletael*), cuya asociación mayoritaria pertenece a la serie de jabunales de la *Gypsophilo struthii-Centaureetum hyssopifoliae*:
Los efectos en este HIC se producen en el apoyo T-28 PSF LOE, en los 20m² afectados por su desmantelamiento; y en el apoyo T-78, a lo largo de los 10-12m finales de acceso hasta la base del apoyo en los que se transita con vehículo ligero.

Aunque estas comunidades de HIC 1520* con vegetación gipsícola son de distribución más escasa en comparación con retamares y herbazales citados anteriormente, dado lo reducido de los efectos por las acciones del proyecto, el impacto ha de considerarse no significativo para la conservación de las referidas comunidades.

Además de las comprobaciones referidas al principio de este apartado, se ha identificado en torno al apoyo T-42 una comunidad vegetal que no está considerada como hábitats de interés comunitario en el listado del Anexo I por la Directiva, pero que presenta un gran interés por estar dominada por una población de Cynara tournefortii, especie de flora amenazada, acompañada puntualmente por otra especie también amenazada y que aparecen juntas en otras citas, Malvella sherardiana.

Esta comunidad de cardos en ambientes ruderales y barbechos sobre arcillas grises que alberga una población dominante de Cynara tournefortii y Malvella sherardiana sería impactada significativamente, en 475m², por las acciones derivadas de la adecuación del apoyo T-42 en zona de paso de la línea aérea a subterránea. A continuación se presenta una síntesis de los efectos potenciales en los HIC.

<table>
<thead>
<tr>
<th>Apoyo/ Acceso</th>
<th>Código HIC</th>
<th>Acción</th>
<th>Potenciales efectos</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-14</td>
<td>HIC 5330</td>
<td>TIPO 1</td>
<td>Se ocuparían 15m² en el acceso y 50m² en la campa.</td>
</tr>
<tr>
<td></td>
<td>HIC 1430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-26</td>
<td>HIC 5330</td>
<td>TIPO 2</td>
<td>Tránsito campo a través mediante vehículo ligero, tipo todoterreno o pick-up, a lo largo de 227m.</td>
</tr>
<tr>
<td></td>
<td>HIC 1430</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-64</td>
<td>HIC 92D0</td>
<td>TIPO 2</td>
<td>Tránsito con vehículo ligero campo a través a lo largo de los 12m finales de acceso.</td>
</tr>
<tr>
<td>T-65</td>
<td>HIC 92D0</td>
<td>TIPO 2</td>
<td>Tránsito con vehículo ligero de 80m.</td>
</tr>
<tr>
<td>T-66</td>
<td>HIC *6220</td>
<td>TIPO 1</td>
<td>La campa tendría efectos sobre 75 m².</td>
</tr>
<tr>
<td>T-75</td>
<td>HIC 1520*</td>
<td>TIPO 2</td>
<td>Tránsito vehículo ligero en los últimos 12m campo a través.</td>
</tr>
<tr>
<td></td>
<td>HIC *6220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-28 PSF LOE</td>
<td>HIC 1520*</td>
<td>TIPO 1</td>
<td>Efectos en 20m² en la zona de campo</td>
</tr>
<tr>
<td></td>
<td>HIC *6220</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.6.3. Caracterización del impacto en los HICs

Aunque los impactos en los HICs no revisten mayor gravedad, sí se producen puntualmente impactos en los que habrá que tener especial atención en el desarrollo del proyecto dado lo sensible de los hábitats gipsícolas, los pastizales con esparto y los tarayales. Por todo ello, los atributos de importancia de los efectos en los HICs son de signo negativo; de intensidad media,
parcial, directo; simple; temporal; reversible y recuperable. El impacto se clasifica como compatible-moderado.

6.7. EFEKTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LA FAUNA

Las actuaciones asociadas al cambio de tensión de la L/San Sebastián de los Reyes-Loeches y al cambio de conductor del tramo L/Puente de San Fernando-Loeches pueden afectar a la fauna de los siguientes modos: perturbaciones y molestias y modificación del riesgo de colisión (ver detalles en el anexo relativo a avifauna del estudio de impacto ambiental.

6.7.1. PERTURBACIONES Y MOLESTIAS

Con carácter potencial, la fauna más vulnerable o más sensible al ruido y a la presencia de personas y maquinaria, podría evitar la zona de trabajos y su entorno más próximo. El período de cría es el momento del ciclo anual en el que podrían manifestar los efectos sobre la fauna más sensible derivados de perturbaciones y molestias, ya que podrían abandonar el área de reproducción o verse afectados los resultados de esta.

La magnitud de estos efectos dependerá de la presencia en el entorno de las actuaciones de especies sensibles a los trabajos. Estos efectos se podrían manifestar con mayor intensidad en los entornos de las actuaciones que alberguen áreas de nidificación de especies catalogadas o de interés o dormideros a una distancia sensible (menos de 500 metros), espacios protegidos o catalogados y áreas prioritarias y ámbito de aplicación del RD1432/2008.

A continuación se explican las zonas que potencialmente pueden englobarse bajo estos criterios, divididas por tipologías de actuación:

✔ Actuación de tipología 1: No se ha detectado la presencia de nidificaciones de especies sensibles a menos de 500 metros.
 • Apoyo T-14 (apoyo a recrecer): Coincidente geográficamente con la IBA “Talamanca-Camarma”. Presencia de un área de nidificación de aguilucho cenizo y de cernicalo primilla a menos de un kilómetro.
 • Apoyo T-55 (apoyo a recrecer): Coincidente geográficamente con la ZEPA “Cortados y Cantiles de los Ríos Jarama y Manzanares”. Se trata de un área de campeo de busardo ratoner y milano real.

La comunidad de Madrid cita la presencia dentro del ámbito de estudio de un punto de nidificación de águila imperial. Tras el estudio de avifauna no se ha detectado la presencia de la especie en el área, se tiene constancia de un punto de nidificación a 11 km de la traza, y la IBA “Talamanca-Camarma” se describe como área de alimentación y dispersión juvenil de individuos de la especie.

✔ Actuaciones de tipología 2: se trata de acciones que se realizan mediante medios manuales y con vehículo todo terreno, tratándose de labores propias de mantenimiento, por lo que no habrá impactos por molestias sobre la fauna diferentes a las existentes intrínsecos del propio funcionamiento actual de la línea. A pesar de esto, las actuaciones que destacarían por el grado de conservación del área son:
 • Los apoyos T-62 al apoyo T-65 que son coincidentes geográficamente con la ZEPA “Cortados y Cantiles de los Ríos Jarama y Manzanares”, en la IBA “Cortados y
graveras del Jarama” y en el “Parque Regional del Sureste”. Estos apoyos se localizan en una zona de terrazas del curso bajo del río Henares, que contiene un tarayal próximo al bosque de ribera (olmedas y saucedas), siendo un área de nidificación de cigüeña blanca y área de campeo de milano negro, milano real, busardo ratonero, entre otras especies. Esta área potencialmente puede albergar especies de anfibios (sapillo pintojo) y reptiles (galápago leproso o europeo) sensibles al tránsito de vehículos.

- Los apoyos que se localizan en zona esteparia con presencia de especies esteparias de interés (avutarda común, aguilucho cenizo, y sisón común) y que se accede a los mismos por acceso con tipología campo a través por campo de cultivo de secano: apoyo T-13, T-15, T-18, y T-20.

Respecto a las molestias o intervención de nidificaciones existentes en las torres (por motivos de seguridad) será siempre de aplicación las medidas establecidas en el RD 1432/2008.

Respecto a la pérdida de hábitat la ejecución de los trabajos de acondicionamiento de accesos (única vez se realiza un tramo con actuación en la totalidad de la línea), el movimiento de maquinaria pesada y la ejecución de campas de trabajo potencialmente podría generar mortalidad y pérdida de hábitat en individuos con baja capacidad de movimiento. La pérdida temporal del hábitat se daría en campos de cultivo de secano (apoyos que conectan con la SE de San Sebastián de los Reyes y con la SE de Loeches), y retamar (apoyo T-55). Por la temporalidad de las actuaciones, su reversibilidad, la sensibilidad del biotopo y la potencial presencia de especies en los mismos el impacto se considera no significativo. Se abordarán medidas encaminadas a la potencial afección de nidificaciones en zonas de cultivo de manera previa al inicio de los trabajos.

Considerando la tipología de actuaciones, su carácter puntual, localizado y temporal, teniendo en cuenta el grado de alteración y de contaminación acústica existente, y las especies que se engloban en las áreas de afección de las actuaciones y el uso que hacen estas del territorio, el impacto se considera compatible-moderado.

6.7.2. MODIFICACIÓN DEL RIESGO DE COLISIÓN

Se trata de una incidencia potencial que se circunscribe a la fase de funcionamiento y que ya existe en la actualidad. En el proyecto de ejecución de la LEAT únicamente se llevará a cabo el recrecido de algunos apoyos (13) y por ende de algunos vanos (24), la construcción de 5 apoyos (4 vanos) y el desmantelamiento de 7 apoyos (6 vanos).

Respecto a esto, en los 24 vanos en los que se va a modificar la altura y los nuevos vanos (4) que son objeto de valoración del impacto que puede generar el proyecto sobre la modificación del riesgo de colisión de avifauna destacan los siguientes vanos:

- Vano T-08/T-09 riesgo medio según el proyecto corredor de vuelo. Presencia cerca de área de invernada de grulla común y nidificación de cigüeña común. Se detecta un siniestro de Buteo buteo. Esta zona está señalizada con balizas salvapájaros naranjas.
- Apoyos T-11 al T15 por englobarse dentro de la IBA “Talamanca- Camarma”, tener una sensibilidad alta de colisión y un riesgo muy alto. En las proximidades se identifica la
presencia invernal de grulla común, la nidificación de cigüeña común, presencia de avutarda y reproducción de aquilucho cenizo.
- Apoyos T-52 al T-55 por localizarse dentro de la ZEPA “Cortados y Cantiles de los ríos Jarama y Manzanares”. Por ser área de caza de milano real, milano negro, águila calzada y busardo ratonero.
- Vanos T-65/T-66 por localizarse dentro de la ZEPA “Cortados y Cantiles de los ríos Jarama y Manzanares”, en la IBA “Cortados y graveras del Jarama” y en el Parque Regional “en torno a los ejes de los cursos bajos de los ríos Manzanares y Jarama”.

Por otro lado, si valoramos la totalidad del trazado destacan los vanos del proyecto corredores de vuelo con niveles medio (T-1 al T-10, T-25 al T-25 y T-75 a SE Loeches), alto (T-18 al T-25) y muy alto (T-10 al T-18 y del T-62 al T-65); las áreas coincidentes con la IBA “Talamanca-Camarma” (-T12 al T35 y del T-37 al T-41); la IBA “Canteras y Graveras del Jarama”, ZEPA “Cortados y Cantiles de los ríos Jarama y Manzanares” y Parque del Sureste (T-58 al T-61, T-58 y T-61); y la zona de paso de grulla (T-69 al T-78).

Por último, respecto al estudio de siniestrabilidad de la totalidad de la línea:

- No se ha identificado ningún punto negro de mortalidad.
- La siniestrabilidad registra refleja el valor de 1.33 ind/ km, considerándose sobreestimada por falsos positivos de mortalidad por de restos de caza.
- Se han detectado mortalidad de un *Buteo buteo* y un individuo de la familia Accipitridae en los vanos T-08/T-09 y T-38/T-39 respectivamente.

6.7.3. CARACTERIZACIÓN DEL IMPACTO EN MATERIA DE FAUNA

Por todo ello, los atributos de importancia de los efectos en la fauna son de signo negativo, de intensidad media, extensión parcial, directo, simple, temporal, reversible e irreversible y recuperable. El impacto se clasifica como **compatible-moderado.**

6.8. EFECTOS DE LA ALTERNATIVA SELECCIONADA AL MEDIO SOCIOECONÓMICO

Entre los efectos de la alternativa seleccionada al medio socioeconómico distinguimos la molestia a residentes, la afección a la funcionalidad de carreteras y ferrocarriles y a las líneas ferroviarias, la pérdida de productividad, la generación de empleo y actividad económica, las líneas eléctricas, los gaseoductos, así como la mejora en el funcionamiento de la red eléctrica.

- **Molestias a residentes**

 Generación de molestias a los residentes, derivadas del incremento del tránsito de vehículos, maquinaria y obras de recrecido. Se podrían llegar a producir molestias puntuales a la población residente por el tránsito de maquinaria pesada. En todos los casos la afección será discontinua y breve, aproximadamente 2 semanas por apoyo.

- **Afección a la funcionalidad del viario de carreteras y ferrocarriles**

 En este caso no será necesaria la ocupación ni corte de viario local, únicamente el tránsito, y dado las bajas intensidades de vehículos percibidas durante los trabajos de campo, en las zonas que será necesario transitar, se considera que los posibles efectos generados por esta afección son compatibles con el funcionamiento habitual de los viales y carreteras utilizados. No obstante,
en el anexo de “Fichas de accesos” se incluyen las carreteras que será necesario utilizar para el acceso a los apoyos, y que por lo tanto son susceptibles de recibir estos efectos. A continuación se relacionan las intercepciones de los viales catalogados (red principal y segundo y tercer orden) respecto de los accesos a los diferentes apoyos. Igualmente, se considera que los posibles efectos generados por esta afección son compatibles con el funcionamiento habitual de las líneas. El ámbito de estudio es atravesado por la línea de alta velocidad Madrid- Barcelona, entre los apoyos T-66 y T-67, en Mejorada del Campo y San Fernando de Henares.

- Pérdida de productividad
La pérdida de productividad vendrá derivada de la afección temporal por ocupación de campos de cultivo y por la tala de almendros y también de especies forestales. Aunque estos efectos son de importancia cuantitativa tan escasa que no se puede considerar significativa. Por otro lado, dentro del proceso de solicitud de permisos, REE buscará llegar a acuerdos con cada uno de los propietarios para indemnizar por la pérdida, en su caso, de almendros y de rentabilidad en los cultivos.

- Generación de empleo y actividad económica
Durante la fase de obras se producirá una demanda de mano de obra, así como de diversos trabajos de transporte, carga y descarga de materiales, que posibilitará la generación de empleos por el tiempo que duren estos trabajos: empleos cubiertos por personal de la empresa constructora o empresas auxiliares, y empleos generados indirectamente. Los empleos serán de tipo directo durante el tiempo que dure la obra, mientras que habrá generación indirecta de empleos relacionados con suministro de materiales, así como empresas que cubran los servicios que los propios trabajadores demanden: hostelería, residencia, etc.

- Líneas eléctricas
Las líneas eléctricas interceptadas por parte de los accesos son 24. La mayor densidad de las infraestructuras se localiza en las subestaciones presentes en el ámbito (Loeches, Puente de San Fernando, Ardoz y San Sebastián de los Reyes).

- Gaseoductos
Los gaseoductos presentes en el ámbito de estudio son: Rota- Zaragoza; Loeches- Instalación de CLH- Torrejón de Ardoz-San Fernando de Henares; Loeches- Instalación de CLH-Villaverde; Loeches - Base Aérea de Torrejón y Loeches- Instalación de CLH Barajas (Madrid). De manera más concreta, los accesos a los apoyos T-56, T-57, T-58, T-59 y T-60 cruzan el gaseoducto Loeches- Instalación de CLH Barajas. Todos los cruces con el gaseoducto se realizan en viales en existentes en buen estado.

- Servidumbres aeronáuticas
Dentro de las Servidumbres aeronáuticas existen tres servidumbres diferentes: servidumbres de aeródromo, servidumbres radioeléctricas y servidumbre de operación

- Mejora en el funcionamiento de la red eléctrica
El cambio de tensión de la LE 220 kV San Sebastián - Loeches tiene como objetivo la mejora en la calidad de suministros de energía eléctrica en la región, garantizando la seguridad del sistema en su conjunto. La actuación contribuirá al buen funcionamiento del sistema eléctrico en su conjunto a nivel zonal.
Por todo ello, los atributos de importancia de los efectos en el medio socioeconómico son de signo positivo; de intensidad baja, localizado, directo; simple; permanente; irreversible y recuperable. El impacto se clasifica como compatible.

6.9. EFECTOS DE LA ALTERNATIVA SELECCIONADA AL PAISAJE

La información de análisis del paisaje se encuentra en el anexo del mismo nombre localizado en el estudio de impacto ambiental. Con el análisis de detalle efectuado sobre las dos Zonas de Especial Incidencia Paisajística y la no necesidad de aplicar medidas correctoras en ambos casos se puede llegar a la conclusión de que el impacto potencial del proyecto sobre el paisaje se considera compatible.

<table>
<thead>
<tr>
<th>Zonas de Especial Incidencia Paisajística</th>
<th>Impacto potencial sobre el paisaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEIP 1. ENTORNO DE LA SUBESTACIÓN DE SAN SEBASTIÁN DE LOS REYES</td>
<td>Compatible</td>
</tr>
<tr>
<td>ZEIP 2. ENTORNO DE LA SUBESTACIÓN DE Loeches</td>
<td>Compatible</td>
</tr>
</tbody>
</table>

Se trata pues de un impacto negativo, de intensidad alta, parcial, directo, compleja, permanente, reversible y recuperable. El impacto en el paisaje se califica de compatible.

6.10. EFECTOS DE LA ALTERNATIVA SELECCIONADA A LA PLANIFICACIÓN TERRITORIAL Y URBANÍSTICA

La ejecución de las futuras actuaciones previstas en el proyecto de Cambio de Tensión de la línea eléctrica L/220 a 400 kV San Sebastián de los Reyes- Loeches y Cambio de Conductor del tramo L220 kV Puente de San Fernando- Loeches, llevará asociada una serie de repercusiones sobre los usos del suelo en el ámbito de actuación.

Para la valoración de los impactos, se muestra la representación cartográfica de las actuaciones sobre los distintos usos del suelo esquematizados, por término municipal.

San Sebastián de los Reyes

Los apoyos a demoler y los de nueva construcción se ubican sobre suelo urbanizable y de sistemas generales de la red viaria. Las actuaciones sobre suelo no urbanizable de protección se limitan a la ejecución de recrecidos y trabajos en los que participará únicamente maquinaria ligera, por lo que no se prevé que se puedan causar afecciones significativas.

Paracuellos del Jarama

En el término municipal de Paracuellos, las actuaciones a realizar sobre suelo no urbanizable de protección, se reducen a los trabajos de recrecido en los apoyos T12 y T14, y labores en las que se empleará maquinaria ligera en T10, T11, T25, T26, T28 y T38, ya que el resto de apoyos ubicados en suelos con dicha clasificación no requerirán actuación. Se considera por tanto que la afección será de escasa entidad.

San Fernando de Henares
Según se aprecia en la figura siguiente, las actuaciones en suelos clasificados como no urbanizables de protección, consistirán en actuaciones de maquinaria ligera en los apoyos T53 y T54 y el recrecido del apoyo T55, ubicados en zona de especial protección agrícola, y en los trabajos con maquinaria ligera en los apoyos T62, T63, T64 y T65, situados en suelo no urbanizable protegido por parque regional, por lo que teniendo en cuenta las medidas preventivas y correctoras adecuadas, no se prevén afecciones significativas.

Mejorada del Campo

En el término municipal de Mejorada del Campo, el recrecido del apoyo T66 tendrá lugar sobre suelo de especial protección medioambiental y paisajística, mientras que el recrecido del apoyo T70 y actuaciones de maquinaria ligera en los apoyos T70, T71 y T72 tendrán lugar sobre suelo rústico reservado de protección agropecuaria. Serán por tanto de aplicación las medidas preventivas y correctoras para evitar afecciones significativas sobre los suelos con protección.

No obstante, respecto al planeamiento de Mejorada del campo en la zona de las urbanizaciones Villaflores-El Tallar y El Balcón, es necesario hacer una serie de aclaraciones que se exponen a continuación.

El documento de Revisión PGOU de Mejorada del Campo incluía la regularización de las urbanizaciones Villaflores-El Tallar y El Balcón.

Según la Orden de 27 de junio de 1997 se denegó la aprobación definitiva de dicho Documento de Revisión PGOU de Mejorada del Campo en lo relativo a la regularización de las urbanizaciones Villaflores-El Tallar y El Balcón, incluidas en el Anexo Normativo de los API-1 y API-2, correspondiente a dichas urbanizaciones. Asimismo, acordó el aplazamiento de la Revisión del PGOU en esos ámbitos.

Considerando esto, el suelo estaría considerado como Suelo No Urbanizable (información según la página web de la Comunidad de Madrid llamada Planea).

En el plano de ordenación, se observa que en la zona donde se sitúa la línea, existe zona de suelo Verde Público Sistema General y Verde Público Sistema Local e Interior Plan Parcial.

Loeches

Las actuaciones con maquinaria ligera en los apoyos T73, T74 y T75 tendrán lugar sobre suelos clasificados como no urbanizables de protección especial de espacios de interés forestal y paisajístico de preferente reforestación, mientras que en el apoyo T76 se producirán sobre suelos no urbanizables de protección especial de interés edafológico y en los apoyos, realizándose el resto de actuaciones sobre suelos no catalogados como protegidos. Dada la dimensión de las actuaciones, se prevé una escasa afectación del suelo, lo que implica que los efectos no serán significativos.

Se trataría de un impacto negativo; de intensidad baja, localizado, directo; simple; permanente; irreversible y recuperable. El impacto se clasifica como compatible.
6.11. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LOS ESPACIOS NATURALES PROTEGIDOS

6.11.1. EFECTOS POTENCIALES SOBRE LOS ESPACIOS NATURALES PROTEGIDOS

El Parque Regional del Sureste cuenta con el correspondiente PORN y PRUG en los que se definen una serie de objetivos y usos prohibidos para cada una de las categorías en las que se zonifica el espacio. A este respecto, se han analizado las áreas en las que se ubican los apoyos sujetos a actuación, no habiéndose detectado incompatibilidades con este proyecto, el cual, se asimila a “modificación de una infraestructura eléctrica existente”. Por lo tanto, con respecto a la normativa jurídica de aplicación al uso y gestión del parque el proyecto se considera compatible.

Con respecto a los valores que motivaron la declaración de ese espacio, y dado que existe solape del espacio con la Red Natura 2000 en esta área (rebaño del terreno en el vano T-61/T62, actuación de tipología 2 en los apoyos T-62, T-63, T-64 y T-65) con el fin de no ser reiterativo con esta posible afección, se analizará de forma conjunta en el apartado siguiente.

6.11.1.1. EFECTOS POTENCIALES SOBRE ESPACIOS DE RED NATURA 2000

En este apartado se lleva a cabo un breve análisis de los impactos que el proyecto podría generar sobre la Red Natura 2000. Este análisis se amplía en el Anexo VII de este documento, que incluye el Informe de afección a Red Natura 2000.

Las actuaciones que son coincidentes geográficamente con espacios Red Natura o se localizan en su área de influencia son:

Actuaciones con maquinaria pesada:

- Recrecer el apoyo T-55, incluye camino en buen estado (422 m) y una plataforma de 150 m² sobre retamar.
- Acceso por camino en buen estado al apoyo T-38 (40 m)
- Acceso al apoyo T-9 campo a través (77 m) sobre campo de cultivo.
- Acceso al apoyo T-42PAS (campa a través: 7 m y 175 m de camino existente en buen estado), y 157 m² de plataforma sobre herbazal con presencia de *Cynara tournefortii* con una cobertura del 50%.
- Localización de una máquina de tiro y freno en las proximidades del apoyo T-54 y acceso (165 m) sobre campo de cultivo.

Actuaciones con maquinaria ligera (vehículo todo terreno):

- Adecuación y mejora en los apoyos T-7, T-8, T-38, T-53, T-54, T-61, T-64, T-65, T-62 y T-63 (entre las acciones se identifican colocación de cadenas, grapas, poleas, pesos o cambio de conductor).
- Rebaje del terreno en el vano T-61/T-62.

Se procede a describir los potenciales efectos que puede generar el proyecto sobre los valores de declaración del espacio. De manera detallada solo se procederá a describir los apoyos más...
relevantes por sus efectos o su localización. Se puede consultar en el Anexo VII la totalidad del análisis.

6.11.2. Caracterización del impacto sobre los Espacios naturales protegidos

El principal impacto que se generarían sobre los espacios naturales protegidos se reducen a los 178 m² de la población de *Cynara tournefortii*. Especie que no se cita entre los valores de declaración del espacio pero que se contempla en el Anexo I.

Por todo ello, los atributos de importancia de los efectos en espacios protegidos son de signo negativo, intensidad de media, de extensión parcial, directo e indirecto, simple, temporal; reversible y recuperable. El impacto se clasifica como compatible-moderado.

6.12. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE LOS USOS PECUARIOS, FORESTALES Y MINEROS

Para la identificación de los posibles impactos potenciales en los usos pecuarios, forestales y mineros, se han distinguido: 1) superficie de ocupación de vía pecuaria y 2) superficie ocupada en zona de uso forestal.

Se trataría de un impacto negativo; de intensidad baja, localizado, directo; simple; permanente; reversible y recuperable. El impacto se clasifica como Compatible.

6.13. EFECTOS DE LA ALTERNATIVA SELECCIONADA SOBRE EL PATRIMONIO CULTURAL

Los efectos sobre los elementos que constituyen el patrimonio cultural del ámbito del proyecto se encuentran en el Estudio de Patrimonio Cultural que acompaña al presente Estudio de Impacto Ambiental.

6.14. RESIDUOS GENERADOS POR LA ALTERNATIVA SELECCIONADA

Durante la ejecución de los trabajos se generarán residuos inertes, asociados principalmente a los trabajos de hormigonado (restos de hormigón y limpieza de zonas de lavado de cubas). Residuos reutilizables como son plásticos, maderas y cartones derivados de los embalajes del material, y los residuos peligrosos típicos de la ejecución de una obra de esta tipología (botes de aerosol, trapos y absorbentes de derrames, restos de retirada de vertidos ocasionales, etc.). A continuación, se presenta en una tabla con una estimación de la generación de residuos:

Tabla 14. Resumen de residuos generados por la alternativa seleccionada.

<table>
<thead>
<tr>
<th>Tipo de residuo</th>
<th>Código LER</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excedentes de excavación</td>
<td>170504</td>
<td>117,00 m³</td>
</tr>
<tr>
<td>Restos de hormigón</td>
<td>170101</td>
<td>32,53 m³</td>
</tr>
<tr>
<td>Papel y Cartón</td>
<td>200101</td>
<td>52,60 kg</td>
</tr>
<tr>
<td>Maderas</td>
<td>170201</td>
<td>526,00 kg</td>
</tr>
</tbody>
</table>
6.15. SÍNTESIS DE LOS IMPACTOS POTENCIALES DE LA ALTERNATIVA SELECCIONADA

A continuación, se relaciona la valoración de los impactos potenciales, donde las filas se corresponden con las variables ambientales y las columnas con las valoraciones en fase de obra y en fase de funcionamiento.

Tabla 15. Resumen de impacto potenciales. Simbología al final de la tabla
7. MEDIAS PREVENTIVAS Y CORRECTORAS

El diseño de las medidas ha sido realizado sobre el análisis de los potenciales impactos que se van a producir en la fase de ejecución y explotación, contrastado con los datos obtenidos en las visitas de campo realizadas, es decir, tratando de proyectar soluciones concretas a los impactos detectados, o bien medidas genéricas recomendables, en muchos casos con carácter preventivo, para evitar la generación de un impacto sobre el medio.

De manera complementaria a lo anterior, estas medidas deberán adaptarse en algunos de sus detalles a las condiciones técnicas de trabajo impuestas por las limitaciones con las que se encuentra, en campo, la maquinaria empleada en el proyecto. En este sentido, el plan de vigilancia ambiental (ver capítulo siguiente) se ha diseñado incluyendo este factor, de manera que sirva de herramienta para aumentar la precisión y eficacia de las medidas preventivas y correctoras aquí expuestas.

Las medidas preventivas y correctoras han sido codificadas como “MP” y “MC” respectivamente, seguidas del número que las identifica.

Posteriormente, con la aplicación de estas medidas se reducirá, minimizará y/o paliará los impactos residuales generados (ver plan de vigilancia ambiental en capítulo siguiente).

7.1. MEDIAS PREVENTIVAS

Se definen como las medidas adoptadas en las fases de diseño y de ejecución del proyecto, con el fin de evitar o reducir los impactos de las actuaciones antes de su ejecución.

Se procura incidir con mayor rigor en las medidas preventivas que en las correctoras, con objeto de evitar los posibles impactos antes de su aparición. Para ello se analizan las acciones a llevar a cabo en obra y se analizan las posibles interacciones que pudieran causar al medio.
Las medidas se han clasificado atendiendo a la variable afectada por el proyecto. En este caso se han identificado cinco variables para las que se pueden establecer medidas preventivas: el suelo, la vegetación, la fauna, la atmósfera y los cauces.

7.1.1. MEDIDAS GENERALES DE DISEÑO

Estas medidas se refieren a buenas prácticas a aplicar en la fase de obras y que serán extensibles a todos los tramos de los accesos.

- Selección de la alternativa de menor impacto
- Diseño de los accesos
- Utilización de maquinaria en la base de los apoyos con actuaciones de tipología 1
- Mínima ocupación
- Dimensiones de la maquinaria
- Identificación y definición de los focos potenciales de contaminación
- Emplazamiento de instalaciones auxiliares
- Armado e izado del recrecido o de la torre de nueva construcción
- Rebaje del terreno
- Calidad atmosférica
- Definición del programa de vigilancia ambiental

7.1.2. MEDIDAS PREVENTIVAS PARA LA PROTECCIÓN DEL SUELO

Retirada de tierra vegetal (MP01)

En todos los apoyos con movimientos de tierra, se procederá a una correcta gestión de las tierras excavadas y en particular de la tierra vegetal como se recoge en el Anexo X, y se sintetiza a continuación:

- La tierra excavada se acopiará en cordones cuya altura no superará 1,5m de altura para evitar la compactación de la misma. Se minimizará el tiempo de acopio.
- Tras la excavación y el correspondiente acopio temporal, se extenderá la tierra excavada. En caso de haber distinguido varias profundidades, se respetará el orden original, de manera que los horizontes orgánicos queden en la parte más superficial.
- Quedará prohibido la extensión de otras tierras diferentes a las actualmente presentes, aunque estos sean de muy pequeña magnitud.
- En la superficie de actuación del T-42, principalmente para los trabajos de nivelación del terreno para instalación de grúas, se procederá de forma previa a movimientos de tierra a la retirada de los horizontes edáficos. La retirada de estos suelos se hará con el máximo cuidado, extrayendo la profundidad adecuada para no dejarse en el terreno ningún horizonte edáfico de interés, ni retirar más terreno que el suelo propiamente dicho, para evitar un efecto de dilución del suelo. En caso de que para la ejecución del proyecto, fuera necesaria más profundidad de excavación, estas tierras se acopiarán de forma separada respecto a las tierras procedentes de los horizontes edáficos más superficiales.
Adecuación de caminos con pendiente (MP02):

En aquellos accesos con pendiente, si durante la vigilancia ambiental se considera necesario, se efectuarán cunetas de desagüe y drenajes transversales que rompan la pendiente y conduzcan el agua hacia un lado del camino, de tal forma que minimicen los riesgos de generación de procesos erosivos.

De los accesos planteados, se ha detectado este riesgo a priori en el apoyo T-14, T-75 y T-39.

Adecuación de caminos en zonas próximas a escorrentías naturales (MP03):

En caso de que se produjera la erosión del acceso debido a la cercanía de una escorrentía natural, se estudiaría la ejecución de cunetas que permitan recoger y desviar, de forma paralela al acceso, la escorrentía superficial. De esta forma se evitarán la formación de cárcavas en los accesos, así como las roturas de estos en los puntos de cruce.

Se deberá de tener especial atención en los accesos a los apoyo T-15, T-18, T-19, T-25, T-26 y T-76.

7.1.3. MEDIDAS PREVENTIVAS PARA LA PROTECCIÓN DE LA FLORA Y LA VEGETACIÓN

Talas, podas controladas y desbroces (MP04):

En los tramos donde exista vegetación a los lados del acceso lo suficientemente espesa como para invalidar la anchura del camino, se llevará a cabo podas controladas, que eviten un mayor impacto por desgarros sobre la vegetación durante la fase de obras. Se aplicará cicatrizante sobre la superficie de todos los cortes realizados, de tal forma que se proteja a los ejemplares podados de posibles infecciones. Además, en estos mismos casos, o para la ejecución de la plataforma, se llevarán a cabo desbroces de las especies herbáceas o matorrales. Por último, en caso de que resulten puntualmente necesario se realizarán talas o trasplantes de los ejemplares.

Para estos trabajos se aplicarán las medidas preventivas en materia de prevención de riesgos de incendios implantado por REE para la fase de obras.

Se estima que se tendrán que talar (22 ejemplares, 1 de ellos muerto):

- 1 ejemplar de *Celtis australis* en el apoyo T-58.
- 6 ejemplares de *Pinus halepensis* en el apoyo T-55 (uno de ellos muerto).
- 6 ejemplares de *Pinus pinea* en los apoyos T-56 (1 individuo), en el apoyo T-29 PSF-LOE (2 individuos) y en el apoyo T-30 PSF-LOE (3 individuos).
- 4 ejemplares de *Prunus dulcis* en los apoyos T-59 (1 individuo) y en el apoyo T-70 (3 individuos).
- 3 ejemplares de *Ulmus minor* en el apoyo T-29 PSF-LOE.
- 2 ejemplares de *Ulmus pumilla* en el apoyo T-49.

Además, se estima que tendrán que realizar podas en 5 ejemplares: 2 *Pinus pinea* en el apoyo T-30 PSF-LOE, 1 *Prunus dulcis* en el apoyo T-30 PSF-LOE, 1 *Ulmus minor* en el apoyo T-30 PSF-LOE y 1 *Ulmus pumilla* en el apoyo T-49.

Protección del arbolado (MP05):

Se señalarán aquellos individuos de *Pinus halepensis* que se crea necesario proteger del apoyo T-55 localizados en torno al acceso y a la campa de trabajo.
Medidas preventivas del Proyecto de restauración (MP06)

Se deberán de cumplir las medidas establecidas en el Proyecto de Restauración de la Vegetación (Anexo X). A continuación se lista a modo de síntesis:

Protección de vegetación de interés/ Jalonamientos (MP06.1):

- Jalonamiento del camino de acceso y de la campa o zona de trabajo de todas las zonas HICs tipo 1 afectadas.
- Se respetará T-26, T-38, T-63 y T-65 el camino de acceso quedando prohibido que los vehículos salgan en ningún caso del camino de acceso y la campa de trabajo quedará limitada.

Medidas preventivas de flora protegida del apoyo T-42PAS (MP06.2)

- T-42 PAS cerramiento temporal durante la duración de las obras del perímetro de la obra en la campa de trabajo en torno al apoyo T-42 y en los últimos 25 metros del tramo final del acceso.
- T-42 PAS exclusión de la obra con cerramiento metálico temporal de una superficie de 5m de radio en torno a la zona de la población de *Cynara tournefortii* donde se encuentren los individuos de *Malvella sherardiana*, aproximadamente a unos 10-12m al este de donde se localiza el apoyo.

Cronograma de trabajo del apoyo T-42PAS (MP06.3)

- La ejecución del apoyo T-42 se realizará fuera del periodo vegetativo de la especie desde su germinación hasta que las semillas hayan sido dispersadas, aproximadamente entre el 1 de marzo y el 15 de octubre.

Medidas preventivas para los Hábitats de Interés Comunitario (MP06.4)

- Siempre que sea técnicamente posible, no se entrar con el vehículo hasta la base del apoyo y permanecer en el camino en buen estado. Esto se aplicará en los apoyo T-64 y T-75.

7.1.4. MEDIDAS PREVENTIVAS PARA LA PROTECCIÓN DE LA FAUNA

Cumplimiento legislación de aplicación (MP07)

Se cumplirán las características técnicas para la protección de la avifauna contra la colisión y la electrocución en líneas eléctricas de alta tensión establecidas en el Real Decreto 1432/2008, de 29 de agosto, en la Resolución de 6 de julio de 2017, de la Dirección General del Medio Ambiente, y en el Decreto 40/1998, de 5 de marzo; y los planes de gestión y ordenación de los espacios protegidos y catalogados.

Cronograma de trabajo (MP08)

- Tras los resultados obtenidos por la modificación del proyecto se propone no ejecutar la fase obra civil durante el periodo establecido por el Área de Conservación de Flora y Fauna, en la resolución del 21 de febrero de 2018, desde el 15 de febrero hasta el 15 de agosto, en los apoyos T-14 y T-55.
De manera previa al inicio de los trabajos se presentará el Programa de Seguimiento Ambiental en fase de construcción con el cronograma de trabajos pormenorizados para que sea validado por Dirección General de Calidad y Evaluación Ambiental y Medio Natural del MITECO. En el caso de que esta lo considerara necesario se presentaría con la periodicidad que se estableciera informes específicos del seguimiento de avifauna.

Seguimiento de avifauna (MP09)

- Se realizarán prospecciones previas a la ejecución en la totalidad de las actuaciones con la finalidad de identificar y no afectar a potenciales nidificaciones existentes en las torres (principalmente de nidificaciones de cigüeña), o en las áreas de influencia (no identificadas en la actualidad), prestando especial atención a las actuaciones del apoyo T-55, del vano T-62 al T-65, y de los apoyos T-13, T-15, T-18, T-19, T-20, T-53, T-54, T-71, T-72, T-73, T-74, T-76 y T-77 (vanos con actuaciones a ejecutar con todoterreno en campo de cultivo).
- En caso de aparición de nidos durante la realización de las obras, se deberá informar inmediatamente de ello a la correspondiente Subdirección General de Medio Natural para que en su caso, establezca las medidas que estime necesarias.

Limitación de la velocidad de circulación en los accesos (MP10)

Se propone limitar la velocidad de circulación de los vehículos a menos de 30 km/h tanto en el acceso a la obra como en la misma, con la finalidad de disminuir las posibles molestias que pudieran ocasionarse sobre las especies de fauna presentes en el ámbito, de estudio, especialmente para aquellas con movilidad reducida.

7.1.5. MEDIDAS PREVENTIVAS DE LOS ESPACIOS PROTEGIDOS Y CATALOGADOS

Medidas generales de espacios RN2000 y Parque regional del Sureste (MP11)

- Minimización de las áreas afectadas por las obras restringiéndose al mínimo imprescindible para el acceso y maniobra de la maquinaria necesaria. Se señalizarán o balizarán las zonas más sensibles, especialmente en el entorno de los apoyos T-55 y del vano T-61/T-62 al T-66.
- Las obras se realizarán durante el día, reduciendo al máximo la emisión de ruidos.

7.1.6. MEDIDAS PREVENTIVAS PARA LA PROTECCIÓN DE LA ATMÓSFERA

Medidas en materia de contaminación por partículas en suspensión (MP12)

- Se realizará el riego de caminos en época estival, para no afectar a la población cercana y vegetación colindante, por causa del polvo generado en el tránsito de vehículos, en caso de ser necesario se regarán los caminos con la frecuencia que se establezca según las condiciones del terreno y potencial riesgo de afección.
- No se circulará a más de 30 km/h en los caminos de acceso.
- Se evitará el levantamiento de polvo en las operaciones de carga y descarga de materiales, así como el acopio de materiales finos en zonas desprotegidas del viento para evitar la movilización de partículas. El transporte de materiales sueltos en camiones se ejecutará con lonas que eviten su difusión.

Medida en materia de ruido (MP13)

- Cumplimiento del RD 212/2002, por el que se regula las emisiones sonoras en el entorno debida a determinadas máquinas de uso al aire libre.

- Se procederá a la utilización de maquinaria que cumpla los valores límite de emisión de ruidos establecidos por la normativa, evitando, en la medida de lo posible, el funcionamiento simultáneo de maquinaria pesada, así como las operaciones bruscas de aceleración y retención.

- La totalidad de los terrenos por los que discurre el trazado eléctrico que se analiza están dentro de unas curvas isófonas concretas según la legislación, las cuales se deberán respetar no superando sus límites, delimitadas teniendo en cuenta las Servidumbres Aeronáuticas Acústicas del Aeropuerto Adolfo Suárez Madrid-Barajas aprobadas por Real Decreto 1003/2011, de 8 de julio, por el que se confirman las servidumbres aeronáuticas acústicas, el Plan de acción asociado y el mapa de ruido del Aeropuerto Adolfo Suárez Madrid-Barajas, establecido por Orden FOM/231/2011, de 13 de enero.

- Las obras se realizarán durante el día, reduciendo al máximo la emisión de ruidos.

7.1.7. **MEDIAS PREVENTIVAS PARA LA PROTECCIÓN DE LOS CAUCES**

Protección de calidad de aguas superficiales y Dominios Públicos Hidráulicos (MP14)

- Las instalaciones auxiliares y los acopios de residuos y materiales de obra se ubicarán fuera de la zona de policía durante los trabajos de construcción de los apoyos T-08, T-09, T-18, T-25, T-26, T-42PAS y T-76. Se extremarán las precauciones para evitar el posible riesgo de aporte de sedimentos a los cauces cercanos. Para el lavado de hormigóneras y estacionamiento de utensilios de maquinaria, se dispondrá en un área habilitada a tal efecto lo suficientemente alejada de los cursos de agua.

- En época estival, en los caminos de acceso para los apoyos T-07, T-08, T-09, T-15, T-18, T-19, T-25, T-26, T-38 y T-76, se realizarán riegos periódicos para reducir los sólidos en suspensión que pudieran generarse e incorporarse al cauce. Se debe evitar la remoción de materiales durante la fase de construcción y su posterior arrastre pluvial, para no incrementar el aporte de sólidos a los cauces.

- Las operaciones de cambios de aceites y grasas de la maquinaria utilizada se realizarán en un taller autorizado o cuando esto no sea posible, sobre el terreno utilizando los accesorios necesarios para evitar posibles vertidos al suelo (recipientes de recogida de aceite y superficie impermeable). De manera preventiva, esta última metodología, no será aplicable en el entorno de los espacios integrantes de la Red Natura 2000 ni en el ámbito del PORN del Parque Regional, así como en aquellos apoyos próximos a cauces.
(T-63, T-64, T65 y T-42PAS), para evitar o minimizar el riesgo de afección sobre el sistema hidrológico.

- Los cruces de LE sobre DPH, de acuerdo con la vigente legislación de aguas, y en particular con el art. 127 del Reglamento del DPH, deberá disponer de la preceptiva autorización de este organismo.

- En el paso de todos los cursos de agua y vaguadas por los caminos y vías que pueden verse afectado, se deberán respetar sus capacidades hidráulicas y calidades hídricas.

- Se respetarán las servidumbres de 5 metros de anchura de los cauces públicos, según establece el artículo 6 del real Decreto Legislativo 1/2001.

- Se tendrán a pie de obra material de tipo absorbente, como por ejemplo sepiolita, para evitar que algún vertido accidental continúe su curso hacia el subsuelo o termine en la red hidrológica.

7.1.8. MEDIDAS PREVENTIVAS PARA LAS PROTECCIÓN DE LAS VÍAS PECUARIAS

Protección de vías pecuarias (MP15)

- Todos los cruces con el dominio público pecuario (T-4, T-5, T-28, T-49PAS, T-52, T-74 y T-75) deberán ser autorizados por la Dirección General de Agricultura y Ganadería, debiendo ser tramitados conforme a lo establecido en la Ley 8/1998, de 15 de junio, de Vías Pecuarias de la Comunidad de Madrid.

- Se señalizarán o balizarán las áreas de trabajo especialmente en el entorno del apoyo T-56 para garantizar que la plataforma que alojará las grúas no afecte a la vía pecuaria salvo que sea técnicamente inviable.

7.1.9. MEDIDAS PREVENTIVAS PARA PROTECCIÓN DE LOS RIESGOS DE INCENDIOS FORESTALES

Actuaciones, manejo de la maquinaria y limitación de acciones en zona de riesgo de incendio (MP16)

Se darán cumplimiento a las medidas de prevención de incendios recogidas en la legislación específica, tal y como se explica en el Anexo XI Plan de Prevención de Incendios Forestales, para minimizar el riesgo de incendio durante el periodo de obras.

7.1.10. MEDIDAS PREVENTIVAS DE PAISAJE

Mínima ocupación (MP17)

Para los tramos que cuentan con una pendiente longitudinal, los que estén cerca de los ríos Jarama y Henares, así como los incluidos dentro del Parque Regional del Sureste, deberá asegurarse la mínima afección ocupando la menor superficie posible del acceso.
7.2. MEDIDAS CORRECTORAS

Son las destinadas a minimizar el impacto potencial asociado a una acción una vez que ya se ha producido.

7.2.1. MEDIDAS CORRECTORAS PARA LOS ACCESOS Y CAMPAS DE TRABAJO

Movimiento de tierras y excedentes (MC01):

- Los materiales áridos excedentes de la excavación en el acondicionamiento de los accesos, se reutilizarán en las labores de restauración, terraplenado y/o relleno de cárcavas, de forma que se tienda al balance “cero” en la gestión de las tierras. Es decir, se procurará que los aportes de tierras en unas zonas sean los excedentes de otras zonas del acceso. Los excedentes de los trabajos de excavación, en aquellos casos en los que es necesario, se reutilizan en el relleno de la propia pata excavada. Concretamente esta medida se aplicará en los apoyos T-14, T-PAS42, T-PAS49, Re T-61/T-62 y y T-27 LOE-PSF/T-77 (comparten acceso).

- La ejecución de determinadas actuaciones requiere que los materiales cumplan una serie de prescripciones técnicas. Por este motivo, se llevará a cabo una correcta gestión de los acopios de tierras evitando, en la medida de lo posible, mezclar tipologías de tierras.

- Los acopios de inertes se realizarán cumpliendo los siguientes requisitos:
 - Formando caballones o artesas (de sección trapezoidal) cuya altura no excederá de 1,5 m.
 - Evitando el paso de los camiones de descarga por encima de la tierra apilada.
 - El modelado del caballón se hará preferentemente con tractor agrícola que compacte poco el suelo.

Traslado a vertedero de inertes o venta a particular autorizado de los excedentes no reutilizados (MC02):

- Para aquellos excedentes que no puedan ser reutilizados en el acondicionamiento del acceso, por motivos técnicos o motivos de demanda, se proponen dos tipos de gestión:
 - Gestión de los inertes a canteras o particulares autorizados: se trata del tipo de gestión más favorable a nivel ambiental, ya que supone la reutilización del excedente de excavación y por tanto el cumplimiento de la jerarquía de gestión de residuos recogido en la Ley 22/2011, de 28 de julio, de residuos y suelos contaminados. En ambos casos la retirada y transporte de los inertes debe hacerse cumpliendo con los requisitos de las diferentes legislaciones de aplicación en esas materias.
 - El hormigón desechado será eliminado en escombrera o bien extendido en caminos como mejora de firme. No obstante, según el artículo 11 del Real Decreto 105/2008, el hormigón que se considere residuo siempre debe ser entregado a un gestor para su adecuado tratamiento y está prohibida la eliminación directa a vertedero. Por tanto, deberá reconsiderarse el planteamiento de llevar a vertedero el hormigón desechado y, por el contrario, gestionarlo mediante un gestor autorizado.

 - Será de aplicación la Orden APM-1007-2017 (Nacional)
 - Traslado a vertedero de inertes: representa la última alternativa para la gestión de este tipo de materiales, que pasan a ser considerados residuos. La retirada,
transporte y gestión de los residuos inertes debe llevarse a cabo de acuerdo a los requisitos recogidos en la legislación de aplicación.

Minimizar la superficie de ocupación por acopios y por ubicación de maquinaria para el armado e izado de las estructuras (MC03):

- Todos los acopios de tierra vegetal, materiales y/o excedentes de excavación se llevarán a cabo fuera de las zonas con vegetación natural, y cuando esto no sea posible se elegirán las zonas con menor fracción de cabida cubierta, ocupando en todos los casos la menor superficie posible.

Restauración de las campas de trabajo y accesos (MC04):

Gran parte de los trabajos se realizan en suelos presentan poco desarrollo y la materia orgánica es escasa, por lo que el aporte de tierra vegetal podría cambiar las características físico-químicas del suelo y afectar a las semillas presentes en la zona, beneficiando la germinación de especies menos adaptadas al medio.

Laboreo o escarificado (MC05)

Se realizarán trabajos de laboreo o escarificado superficial de 20 cm al finalizar los trabajos para evitar una posible compactación del terreno por el tránsito de la maquinaria en caminos campo a través y en las zonas ocupadas por las campas de trabajo, dejando el terreno descompactando y con la porosidad adecuada, en aquellas zonas donde se cumplan las 2 condiciones siguientes (explicadas en el Anexo X):

- Apoyos con actuación de tipo 1
- Apoyos cuyo acceso sea campo a través, o que tengan campas en zonas de cultivo, eriales o en zonas vegetación natural.

7.2.2. MEDIDAS DE REVEGETACIÓN

En el plan de restauración del Proyecto de Restauración de la Vegetación (Anexo X del EsIA) se describen la totalidad de las medidas de revegetación, restauración y sus tratamientos.

Se realizará un seguimiento de las podas y plantaciones realizadas para que en el caso de que los árboles o arbustos queden perjudicados o terminen en marras puedan ser repuestos con plantones de varias savias y asegurar en lo posible su viabilidad.

Revegetación de Hábitat de Interés Comunitario y zonas con flora amenazada (MC06):

- Se realizarán tratamientos de plantación y siembra con las especies disponibles características de cada hábitat de las zonas HICs afectadas por actuaciones de tipo 1 (maquinaria pesada), en particular: T-14, T-66 y T-28 PSF LOE. Se plantará en proporción 1:4, la superficie de HIC afectada por el proyecto.
- Como medida protectora del tarayal y las poblaciones de *Glycyrriza glabra* en los apoyos T-63, T-64 y T-65 es conveniente el jalonnement de obra para evitar que vehículos y operarios salgan de los caminos de acceso y de la zona de trabajo junto al apoyo.
- Se propone reforestar con especies de tarayal de 0,5has de en la Finca de Caserío del Henares localizada en el Parque Regional del Sureste en el ZEC Cuencas de los ríos Jarama y Henares, en coordinación con la Dirección del Centro de Educación Ambiental de la Finca y el órgano gestor del espacio protegido.

- En el caso particular del apoyo T-64, dada la proximidad del camino de acceso en buen estado hasta muy cerca del apoyo (a tan sólo 12m) y, con objeto de minimizar los posibles efectos, sería recomendable, si fuera técnicamente posible, no entrar con los vehículos hasta la misma base del apoyo y que se mantengan en el citado camino.

Restauración apoyo T-42PAS (MC07)

- Antes del comienzo de las obras en el apoyo T-42, en el periodo del año más apropiado (en años climatológicamente normales aproximadamente en torno a septiembre) se propone proceder a la recolección de semillas de *Cynara tournefortii* y *Malvella sherardiana*, para donación al Banco de Germoplasma del Real Jardín Botánico, donde ya existen semillas de estas especies recogidas en otros emplazamientos, con objeto de contribuir a la conservación y estudio de la diversidad vegetal y, en su caso, poder utilizarlas para una posible plantación para su revegetación.

- En coordinación con el Real Jardín Botánico, que desarrolla el programa nacional *Phoenix 2014* de cultivo *ex situ* de especies amenazadas, se estudiará la posibilidad de desarrollar plántulas de dichas especies para un posible trasplante posterior en el ámbito de las actuaciones en torno al apoyo T-42, especialmente en aquellas zonas donde no hubiera una buena regeneración natural. La superficie potencial de actuaciones de plantación de estas especies será de 0,5has, aproximadamente más de 10 veces la superficie afectada por las obras.

- En coordinación con el órgano gestor del Monte de Utilidad Pública y Monte Preservado “El Calderillo”, localizado a tan sólo unos 300m del apoyo T-42, se considerará la posibilidad de introducir las especies en zonas de igual tipología de suelo y similar ecología que existieran en zonas desarboladas de dicho Monte.

Reposición de ejemplares arbóreos afectados por talas (MC08)

Según ordena la legislación forestal aplicable y las Resoluciones citadas en el apartado 1 de este Anexo, se procederá a restituir todos los ejemplares arbóreos de quercíneas y frondosas en terreno forestal de porte relevante afectado por talas de acuerdo a la proporción 1:4, es decir, 4 ejemplares por cada pie arbóreo afectado. No obstante, para mejorar la integración ambiental del proyecto, este criterio se extenderá a cualquier ejemplar arbóreo. En el anexo X se detallan los individuos que se repondrán como medida para reponer los individuos talados.

7.2.3. MEDIDAS CORRECTORAS PARA EL TRATAMIENTO DE LOS TALUDES

En determinados tramos de los accesos, el acondicionamiento implica la ejecución de taludes de terraplenado o desmonte. Al tratarse de estructuras artificiales y expuestas a las condiciones meteorológicas se proponen una serie de medidas correctoras encaminadas, en su mayoría, a evitar los procesos erosivos y estabilizar los taludes.

Tratamientos de adecuación de taludes (MC09):
- En el caso de los taludes, las operaciones de revegetación se complican debido a la pendiente, que es una barrera técnica para la maquinaria utilizada habitualmente en este tipo de trabajos. Tras la aplicación de medidas correctoras a la pendiente los taludes presentarán una pendiente adecuada para la utilización de medidas de plantación convencionales.
- Una vez estabilizados los taludes, siempre que sea necesario se planteará la siembra de herbáceas y matorrales, para que una vez germinados fijen de forma natural el terreno, y dé comienzo la sucesión ecológica para alcanzar la integración total del talud con el entorno.

7.2.4. TRATAMIENTO DE RESTOS VEGETALES

El tratamiento de restos vegetales es aplicable a todas las actuaciones de proyecto que impliquen el desbroce o tala controlada.

Retirada y gestión de los restos vegetales (MC10):

Los restos vegetales derivados de las operaciones de desbroce y tala pueden ser retirados y gestionados de dos formas:

- A través de gestor autorizado. Para ello, se justificará la gestión mediante entrega del documento de identificación de los residuos y toda la documentación relacionada con el alta del gestor autorizado.
- Mediante cesión a un particular. Para ello se firmará un acuerdo de cesión por el que el particular será el depositario y responsable legal de la madera cedida.

7.2.5. MEDIDAS CORRECTORAS PARA LA COLISIÓN DE AVIFAUNA CON EL CABEADO

Instalación de balizas salvapájaros en las zonas de prioridad alta (MC11):

- Resultado del estudio de avifauna, para minimizar el potencial riesgo de incidencia de accidentes de colisión con los cables se recomienda la instalación de medidas anticolisión en los vanos enumerados a continuación. La propuesta de señalización es resultante del análisis de los valores de la zona de estudio, del estudio de campo, del estudio de “Corredores de Vuelo” y de las resoluciones.
- Se señalizan los vanos con riesgo medio, alto y muy alto del proyecto corredores de vuelo, zona de paso de grulla, áreas coincidentes con la IBA “Talamanca- Camarma” y “Canteras y Graveras del Jarama”, la ZEPA “Cortados y Cantiles de los ríos Jarama y Manzanares”.
- Las medidas anticolisión de triple aspa se proponen en vanos de riesgo muy alto con presencia de aves crepusculares y en áreas con presencia de nieblas (cruce del río Jarama y del río Henares).
Medidas para el seguimiento de la incidencia del incremento de accidentes de colisión de avifauna (MC12)

- Durante la fase de funcionamiento en el marco del programa de vigilancia ambiental (PVA) se llevará a cabo un seguimiento, durante un año, de la incidencia del cambio de tensión y de conductor de la línea sobre la avifauna conforme a la metodología y protocolos específicos desarrollados al respecto por REE. Su objetivo será constatar que la ejecución del proyecto y la propia presencia de la línea existente, no produzca una siniestralidad que pueda considerarse significativa y que no afecte a especies protegidas o amenazadas, y en caso contrario, servir de base para programar medidas correctoras adicionales a las contempladas en el presente estudio de impacto.
- La metodología de este seguimiento se incluye al final del PVA.

7.2.6. MEDIDAS CORRECTORAS DEL PAISAJE

Recuperación e integración paisajística (MC13)

Todas las zonas alteradas en terreno natural por movimientos de tierras serán objeto de medidas de recuperación e integración paisajística, debiéndose utilizar en las siembras y plantaciones que se proyecten especies características de las comunidades vegetales existentes en la zona de actuación, tal y como indica la resolución de 22 de junio de 2018.

7.2.7. MEDIDAS CORRECTORAS DE RESTITUCIÓN

Reposición de los elementos (MC14)

Reposición de las actuaciones sobre vallados, cercados y cerramientos o instalaciones de acceso a fincas: durante el periodo de obra y una vez finalizado este, se deberán prever las medidas adecuadas (instalación de portillos temporales o definitivos y reposición de vallados) para asegurar tanto el acceso a los apoyos como el cerramiento de las fincas afectadas.

8. IDENTIFICACIÓN Y VALORACIÓN DE IMPACTOS RESIDUALES

Tras la aplicación de las medidas preventivas y correctoras descritas en el apartado anterior se procede a reevaluar los impactos producidos por el proyecto, observándose que la gravedad de los impactos se reduce, como puede observarse en la siguiente tabla:
Tabla 16. Resumen de impactos potenciales y residuales. Simbología al final de la tabla

<table>
<thead>
<tr>
<th>FACTOR AMBIENTAL</th>
<th>Fase de Obra</th>
<th>Fase de Operación y mantenimiento</th>
<th>Medida Preventiva/ Correctora</th>
<th>Fase de Obra</th>
<th>Fase de Operación y mantenimiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Potenciales</td>
<td>Potenciales</td>
<td>Residuales</td>
<td>Residuales</td>
<td>Residuales</td>
</tr>
<tr>
<td>Suelos</td>
<td>C</td>
<td>NS</td>
<td>MP01, MP02, MP03 y MC05.</td>
<td>C</td>
<td>NS</td>
</tr>
<tr>
<td>Hidrología</td>
<td>C</td>
<td>NS</td>
<td>MP03 y MP14.</td>
<td>C</td>
<td>NS</td>
</tr>
<tr>
<td>Contaminación Acústica</td>
<td>C</td>
<td>NS</td>
<td>MP13</td>
<td>C</td>
<td>NS</td>
</tr>
<tr>
<td>Campos Electromagnéticos</td>
<td>C</td>
<td>C</td>
<td>MP12, MP13 y MP14</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Vegetación y flora</td>
<td>M</td>
<td>NS</td>
<td>MP01, MP04, MP05, MP06, MC06, MC07, MC08 y MC10</td>
<td>C-M</td>
<td>NS</td>
</tr>
<tr>
<td>Hábitat de Interés Comunitario</td>
<td>C-M</td>
<td>NS</td>
<td>MP01, MP06.4 y MC06</td>
<td>C</td>
<td>NS</td>
</tr>
<tr>
<td>Fauna</td>
<td>C-M</td>
<td>C-M</td>
<td>MP07, MP08, MP09, MP10, MC11 y MC12</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Medio socioeconómico</td>
<td>C</td>
<td>+</td>
<td>-</td>
<td>C</td>
<td>+</td>
</tr>
<tr>
<td>Paisaje</td>
<td>C</td>
<td>C</td>
<td>MP17 y MC13</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>Planeamiento urbanístico</td>
<td>C</td>
<td>C</td>
<td>-</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>ENP / RN2000</td>
<td>C-M</td>
<td>NS</td>
<td>MP06, MP07, MP08, MP09, MP10, MP11, MC06, MC07, MC08, MC11 y MC12</td>
<td>C</td>
<td>NS</td>
</tr>
<tr>
<td>Montes y Vías pecuarias</td>
<td>C</td>
<td>NS</td>
<td>MP15 y MP16</td>
<td>C</td>
<td>NS</td>
</tr>
</tbody>
</table>

Simbología:

- NS: No significativo
- C: Impacto compatible
- C-M: Impacto compatible-moderado
- M: Impacto moderado
- M-S: Impacto moderado-severo
- S: Impacto severo
- CR: Impacto crítico
- +: Impacto positivo
9. PROGRAMA DE VIGILANCIA AMBIENTAL

La función principal del Programa de Vigilancia Ambiental (en lo sucesivo PVA) es establecer un sistema que garantice el cumplimiento de las medidas preventivas y correctoras previstas en el Estudio de Impacto Ambiental y en la posterior Declaración de Impacto Ambiental que se emita del proyecto, siendo una herramienta viva y versátil capaz de adaptarse a las distintas necesidades que se produzcan en cada una de las fases (tramitación, ejecución y operación y mantenimiento).

Además, y como complemento de la función principal, el PVA aplicado en la fase de ejecución (obras) permitirá la detección y evaluación de impactos de difícil cuantificación durante la etapa preoperacional (tramitación), e incluso localizar otros que no hubiesen sido previstos inicialmente, con el fin de establecer nuevas medidas preventivas y correctoras durante la ejecución.

El cumplimiento del PVA se considera fundamental para garantizar el cumplimiento de los requisitos legales que son de aplicación a la actividad de una obra además de servir como documento marco de referencia para establecer las condiciones particulares de las especificaciones medioambientales de la obra (EMACL) que serán vinculantes en el contrato de adjudicación de las obras, acordes al sistema de gestión medioambiental que RED ELÉCTRICA tiene implantado y certificado conforme a la norma UNE-EN ISO 14001 y Reglamento Europeo EMAS III.

El PVA que se ha elaborado describe los controles que serán supervisados durante la vigilancia ambiental de la obra y establece el conjunto de medidas preventivas y correctoras que serán objeto de vigilancia para minimizar y corregir los impactos ambientales analizados en el Estudio de Impacto Ambiental.

La aplicación del PVA durante la fase de ejecución de la obra, permite de forma adicional constituir una fuente de datos importante, ya que en función de los resultados obtenidos se pueden modificar o actualizar los postulados previos de identificación de impactos, para mejorar el contenido de futuros estudios.

El control del PVA se aplica a dos fases:

- Ejecución de las obras.
- Operación y mantenimiento.

9.1. CONTROL EN LA FASE DE OBRAS

(Técnicos de Ingeniería y de Construcción, Supervisión de Obra, y Contratistas) como a la supervisión ambiental propiamente dicha, ambas supeditadas a la Dirección del Proyecto de RED ELÉCTRICA.

Entre ambas Supervisiones existirá un flujo continuo de información, con autorización por parte de la Dirección del proyecto. Así la Supervisión de Ingeniería y Construcción informará a la Supervisión Medioambiental sobre la fecha de inicio de las distintas labores, la forma de ejecución de los trabajos, los problemas que surjan, etc., y la Supervisión Medioambiental comunicará la problemática especial que pueda presentarse en cada punto respecto al trabajo a desarrollar, y transmitirá, con la antelación suficiente para que puedan tomarse en cuenta, los efectos no previstos, de forma que la vigilancia de la obra los tenga identificados para que puedan adoptarse las medidas precisas para corregirlos.

Cada uno de ellos deberá desarrollar una serie de actividades, de ejecución o de vigilancia, de tal manera que se garantice el mínimo daño ambiental posible.
Durante la fase de construcción, se realizará un control permanente de la obra, en el que participarán, como ya se ha mencionado, un conjunto de personas o grupos con responsabilidades en el cumplimiento de los compromisos.

La vigilancia ambiental se encarga de velar por el cumplimiento de una serie de controles generales y particulares que se van a realizar en todas las fases de la obra (adecuación de accesos y campas de trabajo, cimentaciones o refuerzos de las cimentaciones, montaje e izado de apoyo o recrecido, rebaje de terreno, desmantelamiento de apoyos, acondicionamiento final de la obra, aplicación de las medidas correctoras y seguimiento) que irán detallados en las Especificaciones Medioambientales de la obra de construcción (EMACL).

Los controles a desarrollar son:

- Controles a llevar a cabo durante todas las actividades de construcción.
- Controles a llevar a cabo durante el acondicionamiento de accesos y campas de trabajo.
- Control de la afectación sobre las propiedades.
- Controles a llevar a cabo durante las cimentaciones o refuerzos de esta de los apoyos.
- Controles a llevar a cabo durante el armado e izado de apoyos o recrecido.
- Controles a llevar a cabo durante los rebajes de terreno.
- Controles a llevar a cabo durante el desmantelamiento de los apoyos.
- Controles a llevar a cabo durante la restauración de las áreas afectadas por los trabajos.
- Controles de la afectación de carácter particular: patrimonio cultural, hábitat de interés comunitario, avifauna, etc...

De manera previa al inicio de los trabajos, estos controles desarrollados se incorporan a las EMACL del proyecto y se entregan a los licitadores junto a las medidas preventivas al Pliego de Prescripciones Técnicas Particulares de las Obras, de tal forma que toda empresa que licite a la misma tenga conocimiento de las actividades que ha de realizar en cuanto a protección del medio se refiere, así como las precauciones que se han de adoptar en la ejecución de los trabajos para reducir los daños sobre el entorno, quedando contractualmente obligada a su aplicación.

De este modo se incluirán las normas de actuación que los contratistas deberán adoptar para la realización de las obras como: la limpieza de los trabajos en obra, la rehabilitación de daños, la correcta gestión de residuos, el tratamiento y control de la vegetación, las limitaciones en el uso de maquinaria y material de obra, así como la normativa interna aplicable de RED ELÉCTRICA.

10. CONCLUSIONES

Las conclusiones que se pueden extraer de este estudio son las siguientes:

- Tras los procedimientos de evaluación ambiental simplificada previos, los órganos ambientales determinaron la necesidad de un procedimiento ambiental ordinario con una serie de requerimientos, los cuales se han dado cumplimiento en el presente estudio de impacto ambiental.

- El proyecto ha sido objeto de una fase previa de diseño y de análisis técnico y ambiental en la que hubo una adecuación del proyecto a los condicionantes ambientales claves como la flora, la fauna, la presencia de hábitats y espacios naturales protegidos, así como los núcleos urbanos existentes en el ámbito de estudio.
Se realizó un estudio de alternativas para dilucidar la alternativa menos impactante y que evitara en lo posible los principales valores ambientales del ámbito de estudio.

Los impactos potenciales de la alternativa seleccionada del proyecto son todos compatibles, salvo en el caso de los hábitats de interés comunitario, la fauna, los espacios naturales protegidos, cuyo impacto se ha calificado como compatible-moderado y salvo el caso de la vegetación y flora cuyo impacto potencial ha sido calificado como moderado.

Una vez aplicadas las medidas preventivas y correctoras contra el impacto ambiental, resultaron impactos residuales compatibles, excepto en el caso de la variable vegetación y flora, que fue calificado como compatible-moderado.

11. EQUIPO REDACTOR

El presente Estudio de Impacto Ambiental ha sido realizado por personal técnico cualificado, perteneciente a la empresa Evaluación Ambiental, S.L. y por el Departamento de Medio Ambiente de REE.

Por parte de Evaluación Ambiental, S.L.:

- Roberto Vázquez Rodríguez. Licenciado en Ciencias Ambientales
- Alfonso Moreno Faraco. Doctor en Ciencias Biológicas
- Mónica Escudero Guillén. Licenciada en Ciencias Ambientales.
- Adrián Gómez Gómez. Licenciado en Ciencias Ambientales
- Rafael Medina. Ingeniero de Caminos, Canales y Puertos
- Laura Hernández Aránguez. Licenciada en Ciencias Ambientales

Por parte de REE:

- Álvaro Sánchez Liébana. Licenciado en Ciencias Ambientales

Madrid, 5 de diciembre de 2018
Cambio de tensión de 220 kV a 400 kV de la LE aéreo-subterránea San Sebastián de los Reyes-Loeches y Cambio de conductor de la LE Loeches-Puente de San Fernando, en la provincia de Madrid.

Documento de síntesis del Estudio de Impacto Ambiental
EXPLORACIÓN

1. **Ámbito de estudio**
 - U: San Sebastián de los Reyes - Loeches

2. **Tramo a desmantelar**
 - SE

3. **Red de vías de acceso**
 - Apoyos

4. **Medidas anticolisión existentes**
 - Espiral naranja

5. **Proyecto**
 - Cambio de tensión de 220 kV a 400 kV de la LE aéreo-subterránea
 - Diciembre 2018

PROYECTO

- **Ámbito de estudio**
 - U: San Sebastián de los Reyes - Loeches

- **Tramo a desmantelar**
 - SE

- **Actuaciones en apoyos**
 - Recreo
 - Actuaciones de adecuación y mejora**
 - Nueva construcción
 - Modificación geometría

SÍNTESIS AMBIENTAL

- **Red Natura 2000**
 - Montes de Utilidad Pública
 - Montes Preservados
 - Montes de Utilidad Pública
 - Montes Preservados

- **Espacios Naturales Protegidos. Comunidad de Madrid.**
 - Parque Regional en torno a los ríos Manzanares y Jarama.

- **Hábitat de Interés Comunitario. MITECO**
 - Hábitat de interés Comunitario
 - Hábitat de interés Comunitario

- **Montes públicos. Comunidad de Madrid.**
 - Montes de - El Cruce
 - Montes Preservados

- **Vías pecuarias. BCN 25.**
 - Vías pecuarias

- **Medidas anticolisión. EsIA.**
 - Espiral naranja
 - Triple aspa*

Notas: *La triple aspa sustituirá a la medida anticolisión existente pezal en los tramos coincidentes.

La base cartográfica utilizada procede de la Base Cartográfica Nacional, en formato vectorial 1:25.000.
PROYECTO
Ámbito de estudio
- Nuevo tramo
- Tramo a desmantelar
- SE
- Redag del terreno

Apoyos

Actuaciones en apoyos
- Recuadro
- Actuaciones de adecuación y mejoras**
- Nueva construcción
- Adecuación CT apoyo PAS
- Desmantelar
- Modificación geométrica

Accesorios

2- Existente en buen estado
3- Campo a través
5- Tramo con actuación

Medidas anticolisión existente
- Espiral naranja

Nota*: En la traza proyectada solo se representa el tramo aéreo de la LE.
Nota**: instalación de grapas y/o poleas y/o cadenas de la LE.

ENTEIS AMBIENTAL
Red Natura 2000
- Zona de Especial Protección
- Zona de Especial de Conservación

Espacios Naturales Protegidos. Comunidad de Madrid.
- Parque Regional en torno a los ríos Manzanares y Jarama.
- (Parque Regional del Sureste)

Hábitats de Interés Comunitario. MITECO
- Hábitat de interés Comunitario no Prioritario
- Hábitat de interés Comunitario Prioritario
- Hábitat de interés Comunitario No Prioritario

Montes públicos. Comunidad de Madrid.
- Montes de Utilidad Pública
- Montes Preservados
- Vías pecuarias. BCN 25.

Medidas anticolisión. EsIA.
- Espiral naranja
- Triple naranja

Nota*: La triple espiral sustituye la medida anticolisión existente (escalera) en los tramos coincidentes.

La base cartográfica utilizada procede de la Base Cartográfica Nacional, en formato vectorial E 7 25.000

Tamaño de impresión A2
Sistema de coordenadas ETRS 1989

Proyecto: 40.1000 40.1500 40.2000 40.2500

Diciembre 2018
PROYECTO
Ámbito de estudio
Nº U San Sebastián de los Reyes - Loeches
Nº SE
SE
Tramo a desmantelar
Regulación del terreno

Apoyos
Actuaciones en apoyos
Reciclaje
Actuaciones de educación y mejora**
Nueva construcción
Adecuación CT apoyo PAS
Dismantelar
Modificación geometría

Accesos
2- Existente en buen estado
3- Campo a través
5- Tramo con actuación

Medidas anticollación existentes
Espinal naranja
Nota*: En la traza proyectada sólo se representa el tramo aéreo de la LE.
Nota**: instalación de grapas y/o poleas y/o cadenas y/o contrapesos y/o cambio de conductor.

SÍNTESIS AMBIENTAL
PROYECTO
Red Natura 2000
Zona de Especial Protección
Área de Aves
Zona de Especial Protección
Área de Aves

Espacios Naturales Protegidos. Comunidad de Madrid.
Parque Regional en torno a los eje de los cursos bajos de los ríos Manzanares y Jarama.
(Parque Regional del Sureste)
Hábitats de Interés Comunitario. MITECO
Habitat de interés Comunitario. Páramo
Habitat de interés Comunitario. No Páramo

Montes públicos. Comunidad de Madrid.
Montes de Utilidad Pública
Montes Preservados

Visas pecuarias. BCN 25.
Vías pecuarias

Medidas anticollación. EsIA.
Espinal naranja
Triple aspa*

Nota*: La triple aspa sustituirá a la medida anticollación existente (espiral naranja) en los tramos coincidentes.

La base cartográfica utilizada procede de la Base Cartográfica Nacional, en formato vectorial 1:25.000.