SE a 220/132/66 kV Santa Ponça,
L/ a 66 kV Palmanova – Santa Ponça,
L/ a 220 kV Santa Ponça– Santa Ponça EC,
L/ a 220 kV Valldurgent – Santa Ponça,
L/ a 66 kV Calvià – Santa Ponça,
L/ a 66 kV Santa Ponça– Andratx y
L/ a 66 kV Santa Ponça– Sant Agustí

REE – IB – 021/1

DOCUMENTO DE SÍNTESIS

MAYO 2009
Documento de Síntesis

S.E. a 220/132/66 kV Santa Ponça, L/66 kV Palmanova-Santa Ponça,
L/220 kV Santa Ponça-Santa Ponça E.C., L/220 kV Valldurgent-Santa Ponça,
L/66 kV Calvià-Santa Ponça, L/66 kV Santa Ponça-Andratx y L/66 kV Santa Ponça-Sant Agustí

ÍNDICE
ÍNDICE

1. PRESENTACIÓN..7
 1.1. ANTECEDENTES...7
 1.2. NECESIDAD Y OBJETIVO DEL ESTUDIO DE IMPACTO AMBIENTAL..8
2. NECESIDAD Y OBJETIVOS DEL PROYECTO..9
3. CONSULTAS PREVIA...10
4. METODOLOGÍA..11
5. ÁREA DE ESTUDIO..12
6. DESCRIPCIÓN DEL PROYECTO..13
 6.2. DISposición GENERAL DE LAS LÍNEAS ElÉCTRICAS...14
 6.2.1. LíNEAS A 66 KV...14
 6.2.1.1. L/66 kV Palma Nova – Santa Ponça...14
 6.2.1.2. L/66 kV Calvià – Santa Ponça...14
 6.2.1.3. L/66 kV Santa Ponça – Andratx..15
 6.2.1.4. L/66 kV Santa Ponça – Sant Agustí..15
 6.2.1.5. Soterramiento de las líneas a 66 kV...16
 6.2.2. LÍNEA SUBTERRÁNEA A 220 KV..17
 6.2.2.1. Descripción del trazado de la línea L/220 kV Santa Ponça – Santa Ponça E.C.17
 6.2.2.2. Soterramiento de la línea a 220 kV..18
 6.2.3. CONVERSION AERO-SUBTERRÁNEO DE UNA LÍNEA A 220 KV..19
 6.2.3.1. Descripción del trazado de la línea L/220 kV Valldurgent – Santa Ponça.........................19
 6.2.3.2. Soterramiento de la línea a 220 kV..20
6.7. INVENTARIO AMBIENTAL PRELIMINAR...22
 7.1. SUELO..22
 7.2. HIDROLOGÍA..22
 7.3. RIESGOS GEOLOGÓICOS..23
 7.4. VEGETACIÓN..23
 7.5. FAUNA...24
 7.6. MEDIO SOCIOECONÓMICO...25
 7.7. PLANEAMIENTO...26
 7.8. ESPACIOS NATURALES PROTEGIDOS..26
 7.8.1. ESPACIOS PROTEGIDOS POR LA LEY 1/1991 DEL PARLAMENTO BALEAR..................27
 7.8.2. ZONAS DE ESPECIAL PROTECCIÓN PARA LAS AVES (Z.E.P.A.), LUGARES DE
 IMPORTANCIA COMUNITARIA (L.I.C.) Y HÁBITATS DE INTERÉS COMUNITARIO................27
 7.9. PATRIMONIO CULTURAL..27
 7.10. PAISAJE...28
7.10.1. UNIDADES DESCRIPITIVAS DEL PAISAJE... 28
7.10.2. CALIDAD Y CAPACIDAD DE ABSORCIÓN VISUAL .. 28
8. ELECCIÓN DE LA SOLUCIÓN ADOPTADA .. 31
 8.1. SUBESTACIÓN A 220/132/66 kV SANTA PONÇA ... 31
 8.1.1. CONSIDERACIONES PREVIAS ... 31
 8.1.2. DEFINICIÓN DE CONDICIONANTES ... 31
 8.1.3. DEFINICIÓN DE ALTERNATIVAS ... 32
 8.1.4. JUSTIFICACIÓN DE LA ALTERNATIVA DE MENOR IMPACTO 33
 8.2. LÍNEAS ELÉCTRICAS PREVISTAS .. 34
 8.2.1. CONSIDERACIONES PREVIAS ... 34
 8.2.2. DEFINICIÓN DE CONDICIONANTES ... 34
 8.2.3. DEFINICIÓN DE ALTERNATIVAS ... 36
 8.2.3.1. Línea L/66 kV Palma Nova – Santa Ponça .. 36
 8.2.3.2. Línea L/66 kV Calvià – Santa Ponça ... 37
 8.2.3.3. Línea L/66 kV Santa Ponça – Andratx ... 38
 8.2.3.4. Línea L/66 kV Santa Ponça – Sant Agustí .. 39
 8.2.3.5. Línea L/220 kV Santa Ponça – Santa Ponça E.C. .. 41
 8.2.3.6. Línea L/220 kV Valldurgent – Santa Ponça ... 41
 8.2.4. JUSTIFICACIÓN DE LA ALTERNATIVA DE MENOR IMPACTO 42
9. SÍNTESIS DEL INVENTARIO AMBIENTAL DETALLADO ... 44
 9.1. SUBESTACIÓN A 220/132/66 kV SANTA PONÇA ... 44
 9.1.1. SUELO .. 44
 9.1.2. HIDROLOGIA .. 44
 9.1.3. VEGETACION .. 44
 9.1.4. FAUNA ... 45
 9.1.5. MEDIO SOCIOLOGICO .. 45
 9.1.6. ORDENACIÓN DEL TERRITORIO Y PLANEAMIENTO URBANÍSTICO 45
 9.1.7. ESPACIOS NATURALES PROTEGIDOS Y ZONAS DE INTERÉS NATURAL 45
 9.1.8. PATRIMONIO HISTÓRICO – CULTURAL ... 45
 9.1.9. PAISAJE .. 45
 9.2. LÍNEAS ELÉCTRICAS ASOCIADAS A LA S.E. SANTA PONÇA 45
 9.2.1. SUELO .. 45
 9.2.2. HIDROLOGIA .. 46
 9.2.3. VEGETACIÓN .. 46
 9.2.4. FAUNA ... 46
 9.2.5. MEDIO SOCIOLOGICO .. 47
 9.2.6. ORDENACIÓN DEL TERRITORIO Y PLANEAMIENTO URBANÍSTICO 48
 9.2.7. ESPACIOS NATURALES PROTEGIDOS Y ZONAS DE INTERÉS NATURAL 48
9.2.8. PATRIMONIO HISTÓRICO – CULTURAL
9.2.9. PAISAJE

10. MEDIDAS PREVENTIVAS Y CORRECTORAS

10.1. MEDIDAS PREVENTIVAS

10.1.1. MEDIDAS PREVENTIVAS EN LA FASE DE DISEÑO PARA LA SUBESTACIÓN

10.1.2. MEDIDAS PREVENTIVAS EN LA FASE DE DISEÑO PARA LAS LÍNEAS

10.1.3. MEDIDAS PREVENTIVAS EN LA FASE DE CONSTRUCCIÓN PARA LA SUBESTACIÓN

10.1.4. MEDIDAS PREVENTIVAS EN LA FASE DE CONSTRUCCIÓN PARA LAS LÍNEAS

10.2. MEDIDAS CORRECTORAS

10.2.1. MEDIDAS CORRECTORAS PARA LA SUBESTACIÓN

10.2.2. MEDIDAS CORRECTORAS PARA LAS LÍNEAS

10.3. MEDIDAS PREVENTIVAS Y CORRECTORAS EN LA EXPLOTACIÓN

11. IMPACTOS RESIDUALES Y VALORACIÓN GLOBAL

11.1. IMPACTOS RESIDUALES

11.2. IMPACTO GLOBAL

11. PROPUESTA DE REDACCIÓN DE UN PROGRAMA DE VIGILANCIA AMBIENTAL (P.V.A.)

11.1. PROPUESTA DE P.V.A. EN LA FASE DE CONSTRUCCIÓN

11.2. PROPUESTA DE P.V.A. EN LA FASE DE OPERACIÓN Y MANTENIMIENTO

11.3. MODO DE SEGUIMIENTO DE LAS ACTUACIONES

12. CONCLUSIONES

13. EQUIPO REDACTOR
PLANOS

1) ALTERNATIVAS SOBRE SÍNTESIS AMBIENTAL
2) ALTERNATIVA DE MENOR IMPACTO SOBRE SÍNTESIS AMBIENTAL
3) IMPACTOS RESIDUALES Y MEDIDAS PREVENTIVAS
Documento de Síntesis

MEMORIA
1. PRESENTACIÓN

1.1. ANTECEDENTES

RED ELÉCTRICA de España S.A. (en adelante RED ELÉCTRICA), de conformidad con el artículo 4.2 del Real Decreto 1955/2000, de 1 de diciembre, por el que se regulan las actividades de transporte, distribución, comercialización, suministro y procedimientos de autorización de instalaciones de energía eléctrica, tiene por objeto transportar energía eléctrica, así como construir, maniobrar y mantener las instalaciones de transporte, de acuerdo con lo establecido en el artículo 9 de la Ley 54/1997, de 27 de noviembre, del Sector Eléctrico, modificada por la Ley 17/2007, de 4 de julio, para adaptarla a lo dispuesto en la Directiva 2003/54/CE, del Parlamento Europeo y del Consejo, de 26 de junio de 2003, sobre normas comunes para el mercado interior de la electricidad.

La Red de Transporte de energía eléctrica está constituida principalmente por las líneas de transporte de energía eléctrica (220 y 400 kV) y las subestaciones de transformación, existiendo en la actualidad más de 33.500 Km. de líneas de transporte de energía eléctrica y 400 subestaciones distribuidas a lo largo del territorio nacional. En el caso particular de la Comunidad Autónoma de las Illes Balears, se consideran infraestructuras de transporte de energía las líneas eléctricas a partir de 66 kV.

Las instalaciones previstas en el proyecto objeto del presente documento se encuentran recogidas en el Decreto 96/2005, de 23 de septiembre, de aprobación definitiva de la revisión del Plan Director Sectorial Energético de las Islas Baleares (Anexo D. Actuaciones en transporte de energía eléctrica) con la única excepción de la línea L/220 kV Santa Ponça– Santa Ponça E.C. El resto de instalaciones que se incluyen en el proyecto, son las denominadas por la planificación como:

- subestación eléctrica Santa Ponça a 220/132/66 kV
- L/66 kV Palmanova – Santa Ponça
- L/220 kV Valldurgent – Santa Ponça
- L/66 kV Calvià – Santa Ponça
- L/66 kV Santa Ponça– Andratx
- L/66 kV Santa Ponça– Sant Agustí
1.2. NECESIDAD Y OBJETIVO DEL ESTUDIO DE IMPACTO AMBIENTAL

El Real Decreto Legislativo 1/2008, de 11 de enero, por el que se aprueba el texto refundido de la Ley de Evaluación de Impacto Ambiental de proyectos, incluye como de obligado sometimiento a Evaluación de Impacto Ambiental la construcción de líneas aéreas para el transporte de energía eléctrica con un voltaje igual o superior a 220kV y una longitud superior a 15km; igualmente deben someterse a Evaluación de Impacto Ambiental la construcción de líneas de más de 3km, y de aquellas de menor longitud que pudieran afectar directa o indirectamente espacios considerados Red Natura 2000, cuando así lo determine el órgano ambiental competente - que en relación con los proyectos que deban ser autorizados o aprobados por la Administración General del Estado será el Ministerio de Medio Ambiente y, en el resto de casos, la Comunidad Autónoma competente -, decisión que se ajustará a los criterios establecidos en el anexo III del Real Decreto Legislativo. A su vez contempla que el fraccionamiento de proyectos de igual naturaleza y realizados en el mismo espacio físico no impedirá la aplicación de los umbrales establecidos en los anexos de esta Ley, a cuyos efectos se acumularán las magnitudes o dimensiones de cada uno de los proyectos considerados.

Por otra parte, en la Comunidad Autónoma de las Islas Baleares es de aplicación la Ley 11/2006, de 14 de septiembre, de evaluaciones de impacto ambiental y evaluaciones estratégicas en las Islas Baleares (modificada en su artículo 22 por la disposición adicional décima de la Ley 6/2007, de 27 de diciembre, de medidas tributarias y economocoadministrativas), en cuyo artículo 10 se obliga a someter los proyectos incluidos en el Anejo I al procedimiento administrativo de Evaluación de Impacto Ambiental. En el caso de las instalaciones del proyecto, las subestaciones de transformación de energía eléctrica a partir de 10 MW (anejo I, grupo 3, epígrafe f) y las líneas de transporte de energía eléctrica de tensión igual o superior a 66 kV (anejo I, grupo 3, epígrafe h) deben ser sometidas a Evaluación de Impacto Ambiental.
2. NECESIDAD Y OBJETIVOS DEL PROYECTO

Entre las funciones asignadas a RED ELÉCTRICA como Operador del Sistema se encuentra la de proponer a la Subdirección General de Planificación Energética la planificación de nuevas instalaciones de transporte eléctrico, líneas y subestaciones y que son contempladas en el “Documento de los Sectores de Electricidad y Gas, horizonte 2008-2016” aprobado por Consejo de Ministros a fecha de 30 de mayo de 2008, así como en el Decreto 96/2005, de 23 de septiembre, de aprobación definitiva de la revisión del Plan Director Sectorial Energético de las Islas Baleares.

Adicionalmente, y dado el carácter mallado de la red, la infraestructura creada permite obtener importantes beneficios al conjunto del sistema nacional, por facilitar el mejor aprovechamiento de los recursos del mismo y ser posibles apoyos con el resto de sistemas europeos, aumentándose la fiabilidad y reduciéndose la necesidad de nuevos equipamientos.

Las instalaciones en proyecto cumplirán con las siguientes funciones dentro del sistema eléctrico español:

- **Mallado de la Red de Transporte**

 La subestación a 220/132/66 kV Santa Ponça y las líneas asociadas son fundamentales para asegurar la calidad del suministro de la demanda del sistema. Contribuyen notablemente al mallado de la red de transporte obteniéndose una mayor fiabilidad y calidad en el suministro de la demanda especialmente en las zonas que malla.

 El desarrollo de la nueva subestación eléctrica y de las distintas líneas en proyecto proporciona una vía natural para la evacuación, transporte y alimentación de demandas de electricidad en dichas regiones. Con la ejecución del proyecto objeto del presente estudio, el nivel de calidad del suministro eléctrico en la zona mallada mejorará notablemente.

La nueva instalación de transporte, formada por las actuaciones objeto de este documento, se encuentra contemplada en la Planificación de los Sectores de Electricidad y Gas 2008-2016 Desarrollo de las Redes de Transporte, aprobada por el Consejo de Ministros a fecha de 30 de mayo de 2008, así como en el Decreto 96/2005, de 23 de septiembre, de aprobación definitiva de la revisión del Plan Director Sectorial Energético de las Islas Baleares.
3. CONSULTAS PREVIAS

En el proceso de consultas previas relativas al Documento Inicial del Proyecto que se presentó con el objetivo de servir de base para la iniciación del procedimiento de evaluación de impacto ambiental, se recibió un conjunto de comentarios relativos a los contenidos que se deberían aportar. El Estudio de Impacto Ambiental da respuesta a dichas consultas previas.
4. METODOLOGÍA

La metodología seguida en el Estudio de Impacto Ambiental para seleccionar la ubicación de la subestación Santa Ponça y trazados de menor impacto de las líneas en proyecto contiene los siguientes apartados:

- Delimitación del ámbito de estudio.
- Descripción del proyecto.
- Inventario ambiental del ámbito de estudio.
- Determinación y análisis de alternativas.
- Inventario ambiental detallado de la alternativa.
- Identificación de los potenciales efectos ambientales sobre los elementos del medio.
- Definición y análisis de las medidas preventivas y correctoras.
- Identificación y valoración de los impactos residuales.
- Propuesta para el Programa de vigilancia ambiental (P.V.A.).
- Redacción de un documento de Síntesis, donde se incluya un resumen del Estudio de Impacto Ambiental.
5. ÁREA DE ESTUDIO

El ámbito de estudio abarca parte de la bahía de Palma, entre las estribaciones de la sierra de na Burguesa por el norte, el núcleo de Palmanova por el este y la población de Santa Ponça por el sur y oeste, afectando terrenos pertenecientes al municipio de Calvià.

La definición del ámbito de estudio se ha realizado en base a la ubicación de la futura subestación a 220/132/66 kV Santa Ponça prevista en el Plan Director Sectorial Energético de las Islas Baleares, aprobado por el Decreto 96/2005, de 23 de septiembre, de aprobación definitiva de la revisión del Plan Director Sectorial Energético de las Islas Baleares. Asimismo, se ha tenido en consideración la localización de las subestaciones a 66 kV Palmanova situada entre Palmanova y Magaluf, y Calvià al sur del polígono industrial de Calvià.

El ámbito de estudio resultante de englobar estas instalaciones ocupa una extensión aproximada de 1.440 hectáreas de terrenos ondulados correspondientes a la sierra de na Burguesa y zonas más llanas alteradas por el hombre, donde se asientan las urbanizaciones, polígonos industriales y núcleos de población, así como los campos de labor.

El área en estudio ocupa parte de dos espacios naturales definidos por la Ley 1/1991, de espacios naturales y de régimen urbanístico de las áreas de especial protección de las Illes Balears. Se trata del Área Natural de Especial Interés “Sierra de Tramuntana” y de un Área Rural de Interés Paisajístico (A.R.I.P.) que limita con el polígono industrial de Calvià y la urbanización Galatzó por el sur mientras que por el este y oeste lo hace con el A.N.E.I. “Sierra de Tramuntana”.

6. DESCRIPCIÓN DEL PROYECTO

6.1. CARACTERÍSTICAS DE LA SUBESTACIÓN 220/132/66 KV SANTA PONÇA

La nueva subestación a 220/132/66 kV Santa Ponça comprende:
- Parque de 220 kV de tecnología GIS de interior de edificio. Constará de cuatro calles en configuración interruptor y medio (con previsión para dos calles futuras).
- Parque de 132 kV de tecnología GIS de interior de edificio. Constará de cuatro calles en configuración interruptor y medio (con previsión para dos calles futuras).
- Parque de 66 kV de tecnología GIS de interior de edificio. Constará de cuatro calles en configuración interruptor y medio (con previsión para dos calles futuras).
- Dos transformadores de transporte (220/66 kV de 125 MVA)
- Dos transformadores de 220/66 kV (220/132 kV de 160 MVA)
- Instalaciones necesarias para su funcionamiento.

Los nuevos parques de 220, 132 y 66 kV estarán conectados a las líneas L/132 kV Torrente – Santa Ponça; L/66 kV Palmanova Santa Ponça; L/220 kV Santa – Santa Ponça E.C.; L/220 kV Valldurgent – Santa Ponça; L/66 Calvià – Santa Ponça; L/66 kV Santa Ponça – Andratx y L/66 kV Santa Ponça – Sant Agustí.

La nueva subestación a 220/132/66 kV Santa Ponça será propiedad íntegra de RED ELÉCTRICA DE ESPAÑA, S.A. (R.E.E.). Dentro del recinto de la subestación se preverá espacio suficiente como para dar cabida a las instalaciones correspondientes al parque de distribución de energía eléctrica (independientes en su totalidad a las correspondientes a R.E.E. y a las que R.E.E. como propietaria de las instalaciones de transporte dará apoyo a distribución desde el parque de 66 kV).

Parque 220 kV

Se adoptará una configuración en interruptor y medio en instalación blindada, interior, con envolvente metálica y aislamiento en Hexafluoruro de Azufre (SF₆), en el que se equiparán inicialmente cuatro calles, estando previsto el parque en un futuro para seis calles.

El aparellaje de 220 kV estará compuesto por módulos blindados montados en el interior de un edificio construido al efecto, con aislamiento en SF₆. Las conexiones de línea hasta el edificio GIS se realizará mediante cable soterrado.

Parque 132 kV

Se adoptará una configuración en interruptor y medio en instalación blindada, interior, con envolvente metálica y aislamiento en Hexafluoruro de (SF₆), en el que se equiparán inicialmente dos calles, la primera completa y la segunda con interruptor central, módulo a barras 2 y un tubo de conexión y aislamiento de SF₆ entre el interruptor central y barras completas, estando previsto el parque en un futuro para cuatro calles.

El aparellaje de 132 kV estará compuesto por módulos blindados montados en el interior de un edificio construido al efecto, con aislamiento en SF₆. Las conexiones de línea hasta el edificio GIS se realizará mediante cable soterrado.
Parque 66 kV
En el parque de 66 kV se adoptará una configuración en interruptor y medio en instalación blindada, interior, con envolvente metálica y aislamiento en Hexafluoruro de Azufre (SF₆), en el que se equiparán inicialmente cuatro calles completas, estando previsto el parque en un futuro para seis calles.

El aparellaje de 66 kV estará compuesto por módulos blindados montados en el interior de un edificio construido al efecto, con aislamiento en SF₆ y equipos convencionales de interperie. Las conexiones desde la zona de pórticos de línea hasta el edificio GIS se realizarán mediante cable soterrado.

Todas las posiciones descritas se realizarán mediante celdas blindadas aisladas con gas SF₆ (GIS). La interconexión entre las celdas de 220 kV, 132 kV y 66 kV y los transformadores de potencia de 220/66, 220/132 kV y embarrados de 132 kV se realizará mediante cables aislados de aislamiento extrusión aislados (XLPPE) tendidos en canales de cables registrables adecuadamente dimensionados.

Edificios
Se construirán cinco edificios, tres contiguos comunicados entre sí que acogerán los conjuntos GIS de 220 y 66 kV, los armarios de protecciones de las distintas posiciones, cuadros de Servicios Auxiliares y demás instalaciones comunes a los parques. Y un edificio que albergará los conjuntos GIS, servicios auxiliares y protecciones correspondientes a 132 kV contiguo a un taller y a una sala multiusos.

Tanto el edificio GIS de 220 kV como el de 132 y 66 kV tendrán sótano. Los edificios adyacentes a las salas de las celdas GIS no dispondrán de sótano.

6.2. DISPOSICIÓN GENERAL DE LAS LÍNEAS ELÉCTRICAS

6.2.1. LINEAS A 66 KV

6.2.1.1. L/66 kV Palma Nova – Santa Ponça
El trazado de la línea comprende un tramo subterráneo que tendrá su inicio en una nueva cámara de empalmes a construir en la calle Son Bugadelles (cerca de la confluencia con la calle Islas Canarias) para empalmar con la canalización existente de 66 kV S.E. Palmanova – S.E. Calvià. Desde este punto, la traza discurrirá por la calle de Son Bugadelles en dirección noroeste, girando en la rotonda de la carretera MA-1014 y colocándose paralela a ésta, para dirigirse hacia los terminales GIS SF₆ ubicados en la sala de celdas de la subestación S.E. Santa Ponça.

6.2.1.2. L/66 kV Calvià – Santa Ponça
La línea estará constituida por un tramo subterráneo (consistente en una zanja de doble circuito de dimensiones normalizadas (1,4 m de profundidad por 1,4 m de ancho)) que tendrá su inicio en una nueva cámara de empalmes a construir (muy próxima a la subestación Santa Ponça y a unos escasos 10 m de la carretera MA-1014) para empalmar con la canalización existente de 66 kV S.E. Valldurgent – S.E. Calvià. Desde este punto, se dirigirá hacia los terminales GIS SF₆ ubicados en la sala de celdas de la subestación S.E. Santa Ponça. El trazado de la línea será en su totalidad dentro de la parcela destinada a la subestación de Santa Ponça.
6.2.1.3. L/66 kV Santa Ponça – Andratx

La línea de simple circuito tendrá su origen en los terminales interiores tipo GIS SF6 a instalar en la nueva subestación de Santa Ponça y estará constituida por dos tramos: un tramo aéreo y otro subterráneo.

Tramo subterráneo

En el interior de la subestación de Santa Ponça, la traza discurrirá dentro de las canalizaciones habilitadas, hasta salir del recinto por el lado sur de la subestación, colocándose paralela a varios circuitos previstos: S.E. Santa Ponça – S.E. Eivissa, S.E. Santa Ponça – S.E. Sant Agustí y S.E. Palmanova – S.E. Santa Ponça.

La línea discurrirá por zanja de simple circuito de dimensiones normalizadas (1,4 m de profundidad por 0,7 m de ancho) paralela a la carretera MA-1014 manteniendo una distancia de unos 40 m aproximadamente hacia el interior, cruzando perpendicularmente el camino D’es Capdell y dirigiéndose al pasillo formado entre la carretera MA-1014 y la futura subestación de Santa Ponça Estación Conversora. Superada la subestación el circuito discurrirá paralelo a la carretera MA-1014 manteniendo una distancia de unos 9,5 metros aproximadamente a la carretera y discurriendo paralelamente con las líneas subterráneas proyectadas por Red Eléctrica de España de HVDC entre la Península Ibérica y Baleares y la línea de doble circuito 132 kV S.E. Santa Ponça – S.E. Eivissa. A la altura de la rotonda de la calle de Son Thomas, la zanja se desviará de las líneas comentadas y se dirigirá siguiendo un trazado paralelo al que sigue la línea subterránea existente entre las subestaciones de Calvià y Andratx hasta llegar al nuevo apoyo de conversión donde finalizará el trazado de la línea subterránea.

Tramo aéreo

El tramo aéreo se inicia en el apoyo a mantener T.2 desde donde discurre hasta el nuevo apoyo de conversión aéreo-subterráneo T.1 situado fuera de la traza actual de la línea existente S.E. Andratx – S.E. Calvià. Instalando el nuevo apoyo T.1 fuera de la traza actual se mejoran las condiciones mecánicas del apoyo anterior (T.2). Así, el nuevo vano formado con los conductores a retensar será de 236,6 metros y el nuevo ángulo de desvío de la traza en T.2 será de 47,45g. No se efectuará ningún cruzamiento con otros servicios.

6.2.1.4. L/66 kV Santa Ponça – Sant Agustí

La línea de simple circuito tendrá su origen en los terminales interiores tipo GIS SF6 a instalar en la nueva subestación de Santa Ponça y, como en el caso anterior, también está constituida por un tramo aéreo y otro subterráneo.

Tramo subterráneo

En el interior de la subestación de Santa Ponça, la traza discurrirá dentro de las canalizaciones habilitadas, hasta salir del recinto por el lado sur de la subestación, colocándose paralela a los circuitos previstos: S.E. Santa Ponça – S.E. Andratx, S.E. Santa Ponça – S.E. Eivissa, S.E. Calvià – S.E. Santa Ponça y S.E. Palmanova – S.E. Santa Ponça.

La línea discurrirá por zanja de simple circuito de dimensiones normalizadas (1,4 m de profundidad por 0,7 m de ancho) paralela a la carretera MA-1014 manteniendo una distancia de unos 30 m aproximadamente hacia el interior. A la altura de la rotonda, la zanja se dirigirá en dirección sur, paralela a la línea en proyecto L/66 d/c Palmanova – Santa Ponça discurriendo las dos, por la calle de Son Bugadelles.

En la confluencia con la calle Baleares el circuito girará en dirección a oeste y proseguirá el trazado hasta la calle Madalena, donde la traza volverá a girar para dirigirse en dirección sur al cruce perpendicular de la calle Islas Canarias. Superada la calle, la línea cruzará el torrente existente, dejando el dado de hormigón a un metro por debajo del cauce del torrente.

Rebasado el torrente, la línea se dirigirá hacia el nuevo apoyo de conversión T.18.
Tramo aéreo

El tramo aéreo (en realidad, ya existente) discursirá desde el nuevo apoyo de conversión aéreo-subterráneo T.18 (donde se realizará la subida de los cables, para finalizar en los terminales o botellas exteriores) situado debajo de la traza actual de la línea existente S.E. San Agustín – S.E. Calvià al apoyo a mantener T.17 de la misma línea. Los conductores existentes se mantendrán.

El nuevo apoyo de conversión se instalará debajo de la traza actual, igualando las condiciones mecánicas del apoyo anterior (T.17). El nuevo vano formado con los conductores a retensar será de 302,4 metros. En el tramo aéreo se realizará un cruzamiento con una línea de 15 kV propiedad de GESA ENDESA.

6.2.1.5. Soterramiento de las líneas a 66 kV

Las líneas subterráneas estarán formadas por una o dos ternas de cables (según la línea sea de uno o dos circuitos) cuya instalación se realizará en una canalización en zanja con los cables entubados y los tubos dispuestos en triángulo, embebidos en un prisma de hormigón. La línea subterránea estará dividida en distintos tramos unidos por cámaras de empalme. Las cámaras de empalme serán prefabricadas, deberán soportar el tráfico rodado y, en caso de inundación, aguantarían el empuje del agua.

A lo largo de la traza los dos circuitos comparten la misma zanja. La separación mínima a mantener entre centros de ternas es de 0,7 m.

La zanja consta de la estructura que puede verse en el siguiente croquis:

Zanja tipo 66_132 kV de Simple Circuito

Zanja tipo 66_132 kV de Doble Circuito

En términos generales esta instalación (para una línea de doble circuito) puede describirse de la siguiente manera:

- La zanja por la que discurrirá la línea tendrá unas dimensiones de 1,4 m de ancho y 1,4 m de profundidad mínima, pudiendo ser esta profundidad variable en función de los cruzamientos que se puedan encontrar en el trazado, y que obliguen a una profundidad mayor.
Los cables de potencia se instalarán en el interior de tubulares de 200 mm de diámetro exterior colocados al tresbolillo en un prisma de hormigón. Para la colocación de cada terna de tubos se instalarán separadores-brida cada metro de tal forma que, en posición vertical, el testigo de hormigón quede en su posición más elevada. Estos separadores-brida disponen de una brida que agrupa los tres tubos de 200 mm y el tubo de 110 mm de diámetro exterior. Este último tubo es necesario para la instalación del cable de cobre aislado 0,6/1 kV en el tipo de conexión de las pantallas Single-Point. Se deberá realizar la transposición de este tubo en la mitad del tramo de Single-Point.

- Para la instalación de los cables de fibra óptica necesarios para las telecomunicaciones de la línea se instalarán dos bitubos de polietileno de diámetro 40 mm. Cada bitubo se instalará en el testigo-soporte del separador de cada terna de cables.

- Los cambios de dirección del trazado del tramo subterráneo se intentarán realizar con radios de curvatura no inferiores a 10 m (50 veces el diámetro exterior del tubo) con motivo de facilitar la operación de tendido.

- Durante el trabajo de colocación de los tubos se deberá instalar en su interior una cuerda guía para facilitar el posterior mandrilado de los tubos. Estas guías deberán ser de nylon de diámetro no inferior a 10 mm para todos los tubos, excepto para los tubos de telecomunicaciones que será de diámetro no inferior a 5 mm.

- En el fondo de la zanja y en toda la extensión, se colocará una solera de limpieza de 10 cm de espesor de hormigón HM-15 sobre la que se depositarán los tubos con los separadores.

- Una vez colocados los tubos, inmovilizados y perfectamente alineados y unidos se procederá al hormigonado de los mismos, sin pisar la canalización, vertiendo y vibrando el hormigón de calidad HM-15/B/20 al menos en dos tongadas. Una primera para fijar los tubos y otra para alcanzar la cota de hormigón especificada según el plano de la zanja. Los tubos quedarán totalmente rodeados por el hormigón constituyendo un prisma de hormigón que tiene como función la inmovilización de los tubos y soportar los esfuerzos de dilatación-contracción térmica o los esfuerzos de cortocircuito que se producen en los cables.

- Una vez hormigonada la canalización, se rellenará la zanja en capas compactadas no superiores a 250 mm de espesor, con tierra procedente de la excavación, arena, o todo-uno normal al 95% P.M. (Proctor Modificado). Dentro de esta capa de relleno, a una distancia de 150 mm del firme existente, se instalarán las cintas de polietileno de 150 mm de ancho, indicativas de la presencia de cables eléctricos de alta tensión.

- Por último, se procederá a la reposición del pavimento o firme existente en función de la zona por la que transcurra la instalación. Las reposiciones de pavimentos se realizarán según las normas de los organismos afectados, con reposición a nuevo del mismo existente antes de realizar el trabajo. Con carácter general la reposición de la capa asfáltica será como mínimo de 70 mm, salvo que el organismo afectado indique un espesor superior.

6.2.2. LÍNEA SUBTERRÁNEA A 220 KV

6.2.2.1. Descripción del trazado de la línea L/220 kV Santa Ponça – Santa Ponça E.C.
La instalación estará constituida por un tramo subterráneo que tendrá su inicio en los terminales interiores tipo GIS SF₆ a instalar dentro de la nueva subestación Santa Ponça. En el interior de la subestación, la traza discurrirá dentro de las canalizaciones habilitadas hasta salir del recinto por el lado sur de la subestación.

Una vez fuera de la subestación, la traza discurrirá paralela a la carretera MA-1014 (manteniendo una distancia de unos 50 m hacia el interior), cruzará perpendicularmente el Camí des Capdell y llegará a la nueva subestación Santa Ponça Estación Conversora.
Está previsto que los circuitos entren en el recinto de la subestación Santa Ponça Estación Conversora por el lado noreste de la misma. Desde allí, la traza discorrerá por el interior de la subestación mediante las canalizaciones internas existentes destinadas a tal efecto hasta los terminales interiores tipo GIS SF6.

6.2.2.2. Soterramiento de la línea a 220 kV

La línea subterránea estará formada por dos ternas de cables cuya instalación se realizará en una canalización en zanja con los cables entubados y los tubos dispuestos en triángulo, embebidos en un prisma de hormigón. La línea subterránea estará dividida en distintos tramos unidos por cámaras de empalme. Las cámaras de empalme serán prefabricadas, deberán soportar el tráfico rodado y, en caso de inundación, aguantarán el empuje del agua.

A lo largo de la traza los dos circuitos comparten la misma zanja. La separación mínima a mantener entre centros de ternas es de 1 m.

La zanja consta de la estructura que puede verse en el siguiente croquis:
Para la instalación del cable de cobre aislado 0,6/1 kV necesario en el tipo de conexión de las pantallas “Single-Point” se colocarán dos tubos de polietileno de doble pared de 110 mm de diámetro exterior. Se deberá realizar la transposición de estos tubos en la mitad del tramo single-point.

Para la instalación de los cables de fibra óptica necesarios para las telecomunicaciones de la línea se instalarán dos bitubos de polietileno de diámetro 40 mm. Cada bitubo se instalará en el testigo-soporte del separador de cada terna de cables.

Los cambios de dirección del trazado del tramo subterráneo se intentarán realizar con radios de curvatura no inferiores a 12,5 m (50 veces el diámetro exterior del tubo) con motivo de facilitar la operación de tendido.

Durante el trabajo de colocación de los tubos se deberá instalar en su interior una cuerda guía para facilitar el posterior mandrilado de los tubos. Las guías deberán ser de nylon de diámetro no inferior a 10 mm para todos los tubos, excepto para los tubos de telecomunicaciones que será de diámetro no inferior a 5 mm.

Una vez colocados los tubos, inmovilizados y perfectamente alineados y unidos se procederá al hormigonado de los mismos, sin pisar la canalización, vertiendo y vibrando el hormigón de calidad HM-15/B/20 al menos en dos tongadas. Una primera para fijar los tubos y otra para alcanzar la cota de hormigón especificada según el plano de la zanja. Los tubos quedarán totalmente rodeados por el hormigón constituyendo un prisma de hormigón que tiene como función la inmovilización de los tubos y soportar los esfuerzos de dilatación-contracción térmica o los esfuerzos de cortocircuito que se producen en los cables.

Una vez hormigonada la canalización se rellenará la zanja, en capas compactadas no superiores a 250 mm de espesor, con tierra procedente de la excavación, arena, o todo-uno normal al 95% P.M. (Proctor Modificado). Dentro de esta capa de relleno, a una distancia de 150 mm del firme existente, se instalarán las cintas de polietileno de 150 mm de ancho, indicativas de la presencia de cables eléctricos de alta tensión.

Por último, se procederá a la reposición del pavimento o firme existente en función de la zona por la que transcurre la instalación. Las reposiciones de pavimentos se realizarán según las normas de los organismos afectados, con reposición a nuevo del mismo existente antes de realizar el trabajo. Con carácter general la reposición de la capa asfáltica será como mínimo de 70 mm, salvo que el organismo afectado indique un espesor superior.

6.2.3. CONVERSION AERO-SUBTERRANEO DE UNA LINEA A 220 KV

6.2.3.1. Descripción del trazado de la línea L/220 kV Valldurgent – Santa Ponça

Esta línea comprende un tramo aéreo (que actualmente forma parte de la L/66 kV S.E. Valldurgent – S.E. Calvià y que conectará el pórtico de 220 kV de la subestación de Valldurgent hasta el apoyo de conversión T.25.) y otro subterráneo (que tendrá su origen en los terminales exteriores del nuevo apoyo de conversión T.25. y finalizarán en los terminales GIS SF₆ ubicados en la sala de celdas de la subestación Santa Ponça). El presente estudio de impacto contempla únicamente el tramo subterráneo de la línea.

El tramo subterráneo (de doble circuito) tendrá su origen en los terminales exteriores del nuevo apoyo de conversión T.25. Los circuitos discurrirán en su totalidad, por el interior de la subestación de Santa Ponça, bordeando el edificio principal hasta finalizar su trazado en la zona suroeste del recinto, en que los cables entraran al interior de la subestación.

La línea discurrirá casi en la totalidad del trazado, por zanja de doble circuito de dimensiones normalizadas (1,6 m de profundidad por 2 m de ancho). En la aproximación a los apoyos de conversión, se utilizará una zanja de simple circuito de dimensiones normalizadas (1,6 m de profundidad por 1 m de ancho).
La línea eléctrica de 220 kV de tensión nominal, finalizará en los nuevos terminales tipo GIS en SF₆ de la futura S.E. Santa Ponça.

6.2.3.2. Soterramiento de la línea a 220 kV

Las mismas condiciones que para la L/220 kV Santa Ponça – Santa Ponça E.C. descritas en el punto 6.2.2.2.
Apoyo doble circuito (220 kV) de bajada a subterráneo (1 o 2 circuitos). Tipo D2B.
7. INVENTARIO AMBIENTAL PRELIMINAR

El Estudio de Impacto Ambiental debe reflejar las condiciones del medio físico, biológico, socioeconómico y el paisaje del área en que va a implantarse el proyecto. El inventario ambiental identifica los valores que pudieran ser alterados por el desarrollo del proyecto para definir las medidas preventivas y correctoras. Durante tal inventario se ha efectuado una revisión bibliográfica, solicitado la información a los diferentes organismos administrativos y realizado el correspondiente trabajo de campo.

A continuación se muestra un resumen de los aspectos más destacables del inventario preliminar.

7.1. SUELO

El ámbito de estudio se sitúa en la parte SW de la sierra de Tramuntana, en una zona en la que se localizan materiales, en su mayor parte de litología carbonatada, del Triásico, del Jurásico y del Cretácico que conforman el sustrato rocoso de la sierra. En la zona también se encuentran materiales miocenos de litología margosa y conglomerática con niveles de areniscas. Finalmente, recubriendo los materiales anteriores, se encuentran niveles de sedimentos cuaternarios formados por gravas, arenas y limos que configuran coluviones y depósitos aluviales. De las 6 unidades en que se divide tectónicamente la sierra Norte, el ámbito de estudio se mantiene a caballo de un par de ellas: la unidad Teix – Tomir (asentada sobre los relieves principales) y la unidad Alfabia – Es Barraca (que muestra una serie mesozoica bastante completa y una estructura de plegamiento bien desarrollada).

El ámbito de estudio se caracteriza por situarse entre la interfase de la sierra de Tramuntana y los terrenos correspondientes a la depresión Central. Así, presenta una morfología de suaves pendientes a llanos, que configuran pequeñas laderas de la vertiente meridional de la sierra de Tramuntana. Se desarrollan zonas de bosque y campos de labor que han sido modificados por la actividad humana.

Según información del Instituto Geológico y Minero de España (I.G.M.E.) del Ministerio de Educación y Ciencia y de la Consejería de Medi Ambient del Govern de las Illes Balears, en el ámbito de estudio no se localiza ningún punto de interés geológico.

7.2. HIDROLOGÍA

Los cursos de agua presentes en la zona de estudio se distribuyen en dos de las siete vertientes hidrográficas existentes en Mallorca: vertiente d’Andratx, en el que se encuentra el torrente de Santa Ponça (en ciertos sectores denominado torrente de Son Pillo) que drena sus agua hacia el oeste, y la vertiente de Palma, con varios torrentes de escasa longitud e innumerados que drenan hacia la bahía de Palma, al este. Ambas vertientes se encuentran limitadas por los cerros es Mirador, de ses Miquels, del Rei y de sa Ginesta y por la sierra d’en Ferrer.

Los cursos del sector, entre los cuales el torrente de Santa Ponça (conocido aguas arriba como torrente de Son Pillo), son estacionales y discontinuos y dependen exclusivamente de las precipitaciones, sobre todo en el otoño e invierno cuando éstas son torrenciales.

El Plan Hidrológico de las Islas Baleares (2001) define 21 unidades hidrogeológicas para la isla de Mallorca, de las cuales las siguientes se encuentran en el ámbito de estudio:
Subunidad de Calvià- Se trata de un acuífero conformado en sustrato calizo, dolomítico y conglomerático, en calizas lacustres y arcillas del Paleógeno. La captación de agua tiene destino como abastecimiento y como riego, con la excepción de las zonas que se encuentran salinizadas. Se estima que la recarga asciende a 7,8 hm³/año, mientras que las extracciones alcanzan los 6,7 hm³/año.

Subunidad de Na Burguesa- Se trata de un acuífero conformado en dolomías fracturadas y calizas del Mesozoico, también en conglomerados y areniscas del Paleógeno. La captación de agua tiene destino como abastecimiento y como riego, con la excepción de las zonas que se encuentran salinizadas. Se estima que la recarga asciende a 8,2 hm³/año, mientras que las extracciones alcanzan los 7,2 hm³/año.

7.3. RIESGOS GEOLÓGICOS

Inundabilidad
En el ámbito de estudio las zonas inundables están directamente relacionadas con el curso de las distintas ramblas y barrancos que surcan el territorio, cuyo régimen es marcadamente torrencial.

Según información del Plan Territorial de Mallorca (delimitación de Áreas de Protección de Riesgos (A.P.R.) y del Atles de delimitació geomorfològica de xarxes de drenatge i planes d’inundació de les Illes Balears, las zonas inundables se concentran en las inmediaciones del tramo final del torrente de Santa Ponça y en la zona de Magaluf. Por lo tanto, los emplazamientos previstos para las diferentes infraestructuras eléctricas en estudio no se encuentran en zonas inundables.

Erosión
Debido a la topografía eminentemente llana y a la dureza del material calcáreo en buena parte del ámbito de estudio, el riesgo de erosión no es muy importante. Coincidiendo con lo expuesto en el párrafo anterior, el riesgo de erosión en el ámbito se centra en los diversos cerros que rodean el ámbito de estudio por el norte, este y sur: Ses Miqueletes, Sa Ginesta, d’En Basset y d’Enmig. En este sentido, una de las Áreas de Protección de Riesgos (A.P.R.) definidas por el Pla Territorial de Mallorca para el riesgo de erosión intercepta, parcialmente, la parcela donde se ubicará la futura S.E. Santa Ponça (aunque la subestación propiamente dicha no afecte esta zona).

Movimientos de ladera
La delimitación de Áreas de Protección de Riesgos (A.P.R.) del Pla Territorial de Mallorca (ver planos) localiza las zonas con riesgo de deslizamiento en las zonas montañosas de la isla, notablemente en la sierra de Tramuntana. En el ámbito de estudio, el riesgo de movimientos de ladera existe en algunas zona de su mitad nororiental, coincidiendo con los relieves más importantes (los existentes al oeste y al norte de Palma Nova, básicamente), lejos de los emplazamientos previstos para las diferentes infraestructuras eléctricas en estudio.

7.4. VEGETACIÓN

La vegetación potencial de la zona de estudio se corresponde con el dominio de la “màquia” litoral de acebuche y olivilla (que forma la alianza Oleo – Ceratonior) aunque la vegetación existente difiere mucho de este climax o vegetación potencial, principalmente a causa de la acción perturbadora del hombre, que ha modificado enormemente sus comunidades vegetales, esencialmente, a raíz de la histórica actividad agrícola y ganadera, como del desarrollo turístico, industrial y urbano.
A grandes rasgos, el paisaje vegetal de la zona en estudio se integra en dos unidades: áreas arvenses y ruderales y pinares de pino carrasco con sotobosque formado por especies típicas de la “máquia”, como el acebuche o el lentisco. Además de estos dos tipos, en la zona se localiza otro tipo de comunidades permanentes, como la asociada a los cursos fluviales.

Aunque la presencia de individuos de especies de flora protegida en la zona de estudio resulta difícil (a causa, principalmente, de su elevadísima antropización territorial), en las zonas de bosques y matorrales existentes cabe la posibilidad que se localicen las siguientes especies, en la categoría “Especial protección” según el Decreto 75/2005: Aladierno (Rhamnus alaternus); Brusco (Ruscus aculeatus); Boj (Buxus balearica); Mirto (Myrtus communis); Orchis sp.; Tamarix sp. y Limonium magallufianum.

7.5. FAUNA

La zona de estudio se caracteriza por tener una cierta diversidad de hábitats naturales, aunque en su mayor parte se encuentran bastante alterados, al igual que ocurre con otras zonas de la isla, por razones esencialmente de ocupación agrícola, urbana y extractiva. No obstante, los hábitats agrícolas presentes en todo el ámbito presentan una importancia ecológica significativa para muchas especies de fauna. En este sentido, es destacable la presencia confirmada de la tortuga mora (Testudo graeca) en la zona. Esta población, que ocupa el sudoeste de Mallorca, forma una de las pocas poblaciones españolas de la especie y prácticamente la única de Baleares.

En cuanto a especies protegidas u de especial interés, las siguientes especies (incluidas en el “Llibre Vermell dels Vertebrats de les Balears) se pueden encontrar de forma posible y probable en la zona:

EN PELIGRO DE EXTINCIÓN: Tortuga mora (*Testudo graeca*) (presencia confirmada)

Distribución de *Testudo Graeca* en España según el Atlas y Libro Rojo de los Anfibios y Reptiles de España. Se puede observar que, en Mallorca, esta especie se puede encontrar únicamente al suroeste de la isla.
VULNERABLES: Sapo verde (Bufo viridis); Cormorán moñudo (Phalacrocorax aristotelis); Abejaruco europeo (Merops apiaster); Cuervo (Corvus corax)

CASI AMENAZADO: Águila calzada (Hieraaetus pennatus); Halcón de Eleonora (Falco eleonorae); Halcón peregrino (Falco peregrinus); Cigüeñuela común (Himantopus himantopus); Alcaraván común (Burhinus oedicnemus); Gaviota de Audouin (Larus audouini).

7.6. MEDIO SOCIOECONÓMICO

El ámbito en estudio se sitúa en Calvià, un municipio que ocupa el sector occidental de la Isla de Mallorca. Se trata de una zona de gran interés turístico por sus calas y playas que limita al norte con la sierra de Tramuntana.

La base económica de de Calvià se centra, casi en exclusividad, en el turismo gracias a su situación en la isla, al SE, y por disponer aproximadamente 54 kilómetros de costa rica y diversa. Una pequeña parte se basa en la agricultura con el cultivo del olivo, algarrobo y almendros, y en la ganadería (cerdos y ovejas).

Recursos turísticos

Los principales recursos turísticos de Calvià se encuentran en la costa, fuera del ámbito de estudio. Los únicos recursos turísticos de la zona consisten en parte de rutas a pie: parte de la ruta “Calvià – Torrente de Santa Ponça – Santa Ponça”.

Actividades mineras

La cantera de Son Bugadelles (número de autorización 30) está activa y se encuentra dentro del ámbito de estudio, concretamente en el sector del Puig de sa Ginesta, al este el polígono industrial.

Infraestructuras y servicios existentes

Vías de comunicación: red de carreteras y ferrocarril

- La autovía de poniente MA-1.
- Las carreteras locales: MA-1014 Santa Ponça a Calvià; MA-1015 de Calvià a Palmanova y una carretera innominada que deriva de la Ma-1 y que da acceso al cabo de cala Figuera.
Campos derivados de las carreteras principales y secundarias descritas.

Infraestructuras energéticas

- Subestaciones: S.E. Calvià y S.E. Palmanova (ambas a 66 kV)
- Líneas eléctricas: L/66 kV Sant Agustí – Calvià; L/66 kV Valldurgent – Calvià; L/66 kV Palmanova – Calvià; L/66 kV Andratx – Calvià.

Infraestructuras y servicios en desarrollo

Vías de comunicación: red de carreteras y ferrocarril

- Metro ligero (tranvía) Palma – Andratx.

Infraestructuras energéticas

- L/66 kV Palmanova – Calvià (en subterráneo).
- S.E. Santa Ponça Estación Conversora.

7.7. PLANEAMIENTO

En la zona de estudio se distinguen las siguientes clasificaciones del suelo:

- Suelo Urbano
- Suelo urbanizable.
- Suelo Rústico Protegido
 - Áreas de interés forestal (S.R.-2)
 - Áreas de interés paisajístico (S.R.-3)
 - Áreas de interés agrario tradicional (S.R.-4)

Parque municipal de la Sierra de Na Burguesa. Suelos protegidos por la Ley de Espacios Naturales, que los consideran en su mayor parte como A.N.E.I. A nivel de municipal, se consideran Suelo Rústico Protegido (S.R.-2 y S.R.-3).

Sistema General de Espacios Libres de Galatzó. Los terrenos que incluye se encuentran protegidos tanto por la L.E.N. (todo el ámbito es A.N.E.I.) como por el planeamiento municipal Como Suelo Rústico Protegido (S.R.-1; S.R.-2 y S.R.-3).

- Suelo Rústico Común
 - Áreas de suelo rústico común (S.R.-6)

7.8. ESPACIOS NATURALES PROTEGIDOS

La zona de estudio no incluye Parques Nacionales, Parques naturales, Parajes Naturales, Paisajes Protegidos, Monumentos Naturales, Reservas de la Biosfera, Reserva Natural, o Zonas Húmedas de Interés Internacional (Convenio R.A.M.S.A.R). En cambio, en el ámbito en estudio se localizan (total o parcialmente) las siguientes áreas protegidas:
7.8.1. ESPACIOS PROTEGIDOS POR LA LEY 1/1991 DEL PARLAMENTO BALEAR

Área Natural de Especial Interés (A.N.E.I.)

La A.N.E.I. del Área Natural de la Sierra de Tramuntana comprende la superficie entre Sant Elm y cabo de Formentor, que discurre paralelo a la costa norte de Mallorca, durante 100 km y engloba diferentes unidades ambientales: costa, valle, y montaña, lo que hace que el entorno sea de una gran riqueza.

Área Rural de Interés Paisajístico (A.R.I.P.)

El ámbito de estudio abarca parte de un espacio catalogado como Área Rural de Interés Paisajístico que se encuentra en el sector NW del ámbito de estudio. Paisajísticamente, se trata de un espacio de relieve llano a ondulado ocupado por cultivos de almendros y algarrobos, principalmente, entremezclándose con fincas agrícolas, muy dispersas por el territorio. En las zonas más onduladas domina la vegetación forestal, especialmente pinares de pino blanco.

7.8.2. ZONAS DE ESPECIAL PROTECCIÓN PARA LAS AVES (Z.E.P.A.), LUGARES DE IMPORTANCIA COMUNITARIA (L.I.C.) Y HÁBITATS DE INTERÉS COMUNITARIO

En la zona de estudio no se encuentra ningún espacio perteneciente a la Red Natura 2000 (Lugares de Interés Comunitario (L.I.C.) o Zonas de Especial Protección para las Aves (Z.E.P.A.)). En cambio en el ámbito de estudio se encuentran los siguientes hábitats de interés comunitario (según la Directiva 92/43/CEE):

Hábitats de Interés Comunitario Prioritarios
- Estepas salinas mediterráneas (Limonietalia) [Código UE 1510]

Hábitats de Interés Comunitario No Prioritarios
- Vegetación anual pionera con Salicornia y otras especies de zonas fangosas o arenosas [Código UE 1310]
- Matorrales termomediterráneos y pre-estepicos [Código UE 5330]
- Prados húmedos mediterráneos de hierbas altas del Molinion - Holoschoenion [Código UE 6420]
- Megafaunismo eutrofos higrófilos de las orlas de llanura y de los pisos montano a alpino [Código UE 6430]
- Bosques galería de Salix alba y Populus alba [Código UE 92A0]
- Galerías y matorrales ribereños termomediterráneos (Nerio - Tamaricetea y Securinegion tinctoriae) [Código UE 92D0]
- Bosques de Olea y Ceratonia [Código UE 9320]

7.9. PATRIMONIO CULTURAL

No se dispone de información en cuanto a Bienes Culturales de Interés Nacional (B.C.I.N.) ni Bienes catalogados existentes dentro del ámbito de estudio o de otros elementos del patrimonio histórico. Se resta a la espera de recibir respuesta a la solicitud de petición de información de elementos culturales existentes en el área en estudio realizada por Sinergis Ingeniería al Departamento de Patrimonio Histórico del Consell de Mallorca.
Según la consulta del Catálogo de Edificios y Sitios Protegidos (incluido en la Revisión del Plan General de Ordenación Urbana de Calvià), la zona de estudio contiene los siguientes elementos de interés cultural:

Yacimientos arqueológicos
- Son Bugadelles (Es Pinar) – 021. Elemento situado en el paraje de “S’Arraconada”, al este del polígono industrial de Calvià.
- Son Roig (Ses Cases) – 066. Elemento situado en la cima del paraje “Sa Selleta”, al S del ámbito de estudio.

Yacimientos arquitectónicos

7.10. PAISAJE

7.10.1. **UNIDADES DESCRIPTIVAS DEL PAISAJE**

Se han definido dos Unidades Descriptivas del Paisaje (U.D.P.) para el ámbito de estudio: Bahía de Palma. Y Estribaciones sierra de Tramuntana

Bahía de Palma

Unidad paisajística integrada por áreas agrícolas junto a zonas urbanizadas y áreas industriales. El cultivo principal en la unidad corresponde al algarrobo. En cuanto a vegetación natural, en la zona se desarrolla comunidades ruderales y arvenses típicas de zonas castigadas por la antropización intensa. No obstante, y debido al abandono de los campos de labor, pueden aparecer en esta matriz, campos y parcelas de vegetación arvense, a menudo con frutales en proceso de desaparición.

Se trata de zonas paisajísticamente pobres, más próximas al ámbito urbano que no al rural. Por otro lado, dentro de este conjunto también aparecen puntos con vegetación nula, coincidiendo con zonas totalmente urbanas, denudadas, etc.

Estribaciones de la sierra de Tramuntana

Esta unidad paisajística corresponde a las elevaciones de los terrenos correspondientes a las últimas estribaciones de la sierra de Tramuntana. Se trata de zonas de cierto valor ecológico, natural y paisajístico debido a su diversidad vegetal y faunística. Cualquier alteración del medio ocasionaría una pérdida importante de su valor ecológico.

7.10.2. **CALIDAD Y CAPACIDAD DE ABSORCIÓN VISUAL**

Calidad

Aplicando el método U.S.D.A. Forest Service (modificado y adaptado por el equipo redactor) a las U.D.P. definidas anteriormente se obtiene el siguiente resultado de calidad visual:
La calidad en el ámbito de estudio está bien diferenciada: un área de calidad baja y otra de calidad media – alta que corresponde a las estribaciones de la sierra de Tramuntana.

Fragilidad
Según la metodología propuesta por Yeomans aplicada a las U.D.P. del ámbito de estudio, se obtienen los siguientes resultados de capacidad de absorción visual.

Integración Calidad – Capacidad de absorción visual
Para tener una visión de conjunto entre la calidad paisajística y la Capacidad de Absorción Visual (C.A.V.) –inversa de la fragilidad– y poder establecer el grado de sensibilidad o protección de la zona de estudio se aplica la siguiente matriz de integración

Clase 1. Zonas de alta calidad y baja C.A.V., la conservación de esta área resulta prioritaria.
Clase 2. Zonas de alta calidad y alta C.A.V., aptas en principio, para la promoción de actividades que requieran calidad paisajística y causen impactos de poca entidad en el paisaje.
Clase 3. Zonas de calidad mediana o alta y C.A.V. variable, que pueden incorporarse a las anteriores cuando las circunstancias lo aconsejen.
Clase 4. Zonas de calidad baja y C.A.V. mediana o baja, que pueden incorporarse a la clase 5 cuando sea preciso.
Clase 5. Zonas de calidad baja y C.A.V. alta, aptos desde el punto de vista paisajístico por la localización de actividades muy antropizadas o que causen impactos muy fuertes.

Las combinaciones de alta calidad-alta fragilidad (baja C.A.V.) será candidatas a protección, mientras que las de baja calidad-alta C.A.V. tienen una alta capacidad de localización de actividades antrópicas.

En el caso de la zona de estudio:

<table>
<thead>
<tr>
<th>UNIDADES DESCRIPTIVAS DEL PAISAJE</th>
<th>Valor de Calidad</th>
<th>Valor de C.A.V.</th>
<th>Clase de capacidad de absorción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahía de Palma</td>
<td>1,0</td>
<td>4,2</td>
<td>5,0</td>
</tr>
<tr>
<td>Estribaciones de la sierra de Tramuntana</td>
<td>3,2</td>
<td>2,2</td>
<td>3,0</td>
</tr>
</tbody>
</table>

En el área de estudio se observa que en la unidad descriptiva del paisaje “Bahía de Palma” presenta una alta capacidad de absorción puesto que se trata de una unidad bastante alterada y degradada. Todo lo contrario sucede en la unidad de las estribaciones de la sierra de Tramuntana.
8. **ELECCIÓN DE LA SOLUCIÓN ADOPTADA**

En el presente apartado se procede a la descripción y comparación de las alternativas de emplazamiento de la subestación en proyecto y de las respectivas líneas eléctricas.

8.1. **SUBESTACIÓN A 220/132/66 KV SANTA PONÇA**

8.1.1. **CONSIDERACIONES PREVIAS**

La construcción y el emplazamiento de la subestación Santa Ponça vienen definidos por el Anexo D del Plan Director Sectorial Energético de las Islas Baleares, aprobado por Decreto 96/2005, de 23 de septiembre, de aprobación definitiva de la revisión del Plan Director Sectorial Energético de las Islas Baleares.

El plano D04 del susodicho Anexo D determina la ubicación de la subestación a 220/132/66 kV Santa Ponça, motivo por el cual no se contemplan alternativas de emplazamiento.

La S.E. Santa Ponça se concibe como blindada interior tipo GIS, lo que significa que el parque no se encuentra a la intemperie y que la subestación adquiere, en buena parte, un aspecto de edificación, con lo que se minimiza el potencial impacto paisajístico que puede causarse con la instalación de esta infraestructura eléctrica.

8.1.2. **DEFINICIÓN DE CONDICIONANTES**

Se definen una serie de criterios de tipo técnico y ambiental de forma que, de su toma en consideración y su aplicación al ámbito analizado, se definan las zonas en las que la implantación de la subestación sea viable y los impactos sobre los distintos elementos del medio sean los menores posibles, evitando todas las zonas en las que los efectos fueran críticos o en las que existieran incompatibilidades con elementos existentes.

Para la determinación del emplazamiento de la subestación se han aplicado estos criterios al ámbito analizado con los siguientes resultados:

Suelo
- Zona con pendientes mayoritariamente entre el 5 y el 10%
- Zona sin riesgo de erosión

Hidrología
- Inexistencia de cursos fluviales temporales o permanentes en la zona
- Inexistencia de acuíferos relevantes en la zona
- Zona sin riesgo de inundación

Vegetación
- Antigua zona de cultivos leñosos, actualmente ocupada por vegetación mayoritariamente herbácea de tipo ruderal y arbustiva
- Presencia de algunos pies aislados de especies arbóreas (básicamente pino carrasco)
- Área sin presencia de flora de interés.

Fauna
- Se ha detectado Tortuga mora (*Testudo graeca*) en las proximidades (aunque no en la propia parcela)
- Zona no incluida en ningún catálogo de zonas sensibles para la fauna
Medio socioeconómico

- Infraestructuras cercanas
 - Autovía de poniente MA-1
 - Carreteras MA-1014 de Santa Ponça a Calvià y MA-1015 de Calvià a Palmanova
 - Subestaciones S.E. Calvià y S.E. Palmanova
 - Líneas eléctricas L/66 kV Sant Agustí – Calvià; L/66 kV Valldurgent – Calvià; L/66 kV Palmanova – Calvià; L/66 kV Andratx – Calvià

- Derechos mineros.
 - Inexistencia de canteras en la parcela destinada a acoger la S.E. Santa Ponça
 - Existencia de la cantera de Son Bugadell es (número de autorización 30) en las cercanías

- Recursos turísticos y recreativos. cercanos
 - Ruta rural “Calvià – Torrente de Santa Ponça – Santa Ponça”
 - En zonas costeras cercanas como Santa Ponça, oferta hotelera ligada a las playas de Calvià

- Patrimonio histórico, cultural y etnológico cercano
 - Inexistencia de elementos catalogados en la parcela destinada a acoger la S.E. Santa Ponça
 - En las cercanías, presencia de los yacimientos arqueológicos de Son Bugadelles (Es Pinar) y de Son Roig (Ses Cases) así como de los yacimientos arquitectónicos de Santa Ponça, de Ses Planes y de la Ermita de la Piedra Sagrada.

- Planeamiento urbanístico
 - Suelo Rústico SR-4 (Área de interés agrario tradicional)
 - Espacios protegidos y zonas de interés natural.
 - La parcela tiene la consideración de área Rural de Interés Paisajístico (A.R.I.P.)
 - Proximidad de la Sierra de Tramuntana (A.N.E.I. y Parque Natural Municipal en el sector)

Paisaje

- La parcela se encuentra en la unidad descriptiva del paisaje de la Bahía de Palma (en su límite con la unidad de las Estribaciones de la Serra de Tramuntana).
- La unidad descriptiva del paisaje de la Bahía de Palma es de características urbanas y periurbanas y tiene una calidad y fragilidad paisajísticas bajas

8.1.3. DEFINICIÓN DE ALTERNATIVAS

Alternativa 0

La alternativa 0 supondría la no realización de las actuaciones de proyecto, tanto de la subestación Santa Ponça como de las diferentes líneas eléctricas previstas.
En el supuesto que no se llevaran a cabo las acciones de proyecto, el entorno previsto para la ubicación de la subestación Santa Ponça evolucionaría (previsiblemente) hacia un tipo u otro de urbanización, puesto que su situación, anexa a un polígono industrial y en un contexto en el que se han implantado previamente una serie de infraestructuras e instalaciones induce a considerar que la parcela tenderá más a fundirse con el núcleo de características urbanas a la que se encuentra agregada que no a recuperar un uso agrícola (especialmente considerando la propiedad de la parcela, que ya acoge diversas infraestructuras eléctricas). Esta previsión es congruente con las estipulaciones del Plan Director Sectorial Energético de las Illes Balears que prevé la instalación de la S.E. Santa Ponça en esta situación.

Emplazamiento único

El Emplazamiento Único donde se prevé la ubicación de la S.E. Santa Ponça (determinado por el Plan Director Sectorial Energético) es una parcela de una 6 ha localizada en el término municipal de Calvià, unos 200 m al noreste del polígono industrial de Calvià, anexa a la carretera MA-1014 y delimitada por una cerca metálica. Las características ambientales de este emplazamiento se resumen en el cuadro siguiente:

<table>
<thead>
<tr>
<th>Criterios ambientales</th>
<th>Emplazamiento Único</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendientes suaves (inferior a 7%)</td>
<td>Mayoritariamente entre el 5 y el 10%</td>
</tr>
<tr>
<td>Zona inundable</td>
<td>No</td>
</tr>
<tr>
<td>Acceso al emplazamiento</td>
<td>Fácil por camino existente</td>
</tr>
<tr>
<td>Afección a cursos de agua</td>
<td>No</td>
</tr>
<tr>
<td>Emplazamiento en terrenos agrícolas</td>
<td>No</td>
</tr>
<tr>
<td>Incidencia sobre espacios naturales protegidos o reconocidos por sus valores naturales</td>
<td>Si (A.R.I.P.)</td>
</tr>
<tr>
<td>Incidencia áreas de interés faunístico</td>
<td>Presencia de Testudo graeca en la zona</td>
</tr>
<tr>
<td>Afección áreas de explotación minera</td>
<td>No</td>
</tr>
<tr>
<td>Calidad paisajística</td>
<td>Baja</td>
</tr>
<tr>
<td>Distancia (aproximada) a núcleos de población o urbanizaciones más cercanos</td>
<td>< 100 m</td>
</tr>
<tr>
<td>Planeamiento urbanístico</td>
<td>Suelo Rústico S.R.-4 (Área de interés agrario tradicional)</td>
</tr>
<tr>
<td>Afección a vías pecuarias</td>
<td>No</td>
</tr>
<tr>
<td>Afección a elementos del patrimonio histórico</td>
<td>No</td>
</tr>
</tbody>
</table>

8.1.4. JUSTIFICACIÓN DE LA ALTERNATIVA DE MENOR IMPACTO

Se considera que el emplazamiento único es el que supone un menor impacto ambiental sobre el medio debido a que:

- El Plan Director Sectorial Energético lo selecciona como ubicación óptima, entendiendo que la parcela reúne una serie de condicionantes que permiten consensuar los intereses técnicos y ambientales.
- La vegetación existente en la parcela es mayoritariamente arbustiva y herbácea y de escaso valor ecológico.
- No hay arroyos ni ríos próximos al emplazamiento.
- La parcela tiene un buen acceso en la actualidad al localizarse al pie de la carretera MA-1014.
- No afecta zonas de interés vegetal. Desde el punto de vista faunístico, se ha observado la presencia de la Tortuga Mora (*Testudo graeca*) en las proximidades de la parcela.
• Más allá encontrarse en una A.R.I.P. (Área Rural de Interés Paisajístico), no afecta espacios protegidos.
• No afecta elementos del patrimonio cultural.
• No es una parcela inundable
• No afecta a concesiones mineras, montes de utilidad pública ni vías pecuarias.
• No afecta a servidumbres de infraestructuras.
• El paisaje no se verá muy afectado ya que en el entorno próximo existen otras infraestructuras de similar entidad y ya que la subestación será blindada interior tipo GIS.
• La ubicación propuesta permite la conexión con diferentes puntos proyectados.

8.2. LÍNEAS ELÉCTRICAS PREVISTAS

8.2.1. CONSIDERACIONES PREVIAS
Todas las líneas se conciben en subterráneo exceptuando el apoyo del paso de aéreo a subterráneo de la L/220 kV Valldurgent – Santa Ponça así como parte del trazado de las líneas L/66 kV Santa Ponça – Andratx y L/66 kV Santa Ponça – Sant Agustí.

La L/220 kV Valldurgent – Santa Ponça implica la modificación de una línea existente, no en su trazado en aéreo (que no varía) sino de su trazado subterráneo una vez dentro de la parcela de la subestación. Considerando que el trazado es el óptimo desde un punto de vista técnico y que tiene una incidencia ambiental mínima al transcurrir íntegramente dentro del ámbito de la S.E. Santa Ponça, no tiene sentido la formulación de trazados alternativos en este caso.

En cuanto a la L/220 kV Santa Ponça – Santa Ponça E.C. y L/66 kV Calvià – Santa Ponça, la escasa distancia existente entre el punto de partida y el punto de destino hace innecesario el planteamiento de alternativas ya que, con un recorrido tan corto, no se pueden conseguir diferencias significativas entre las propuestas de alternativas de trazado que permitan realizar una comparativa real desde el punto de vista técnico y ambiental.

El trazado propuesto para las líneas L/66 kV Palma Nova – Santa Ponça y L/66 kV Santa Ponça – Andratx es prácticamente el único viable si se consideran los condicionantes existentes. El resto de trazados posibles no implican diferencias sustanciales desde el punto de vista ambiental y resultan poco lógicos por su longitud o complicación, motivo por el cual no se han considerado.

La línea L/66 kV Santa Ponça – Sant Agustí es la única de las líneas que, dadas sus características y los condicionantes del ámbito de estudio, permite el planteamiento de unas alternativas de trazado viables.

8.2.2. DEFINICIÓN DE CONDICIONANTES
En el diseño de las líneas eléctricas de transporte no es posible realizar cambios bruscos de orientación. Además, en las líneas aéreas debe minimizarse la presencia de los apoyos en pendientes pronunciadas o con riesgos de erosión y, en general, deben respetarse las distancias mínimas a los elementos del territorio señalados en el Reglamento de Líneas Aéreas de Alta Tensión.

La principal medida preventiva para atenuar la incidencia de las futuras líneas eléctricas sobre el medio consiste en la elección de una alternativa que, siendo técnicamente viable evite las zonas más sensibles y presente la menor longitud posible. Para ello las alternativas deben tener presentes las siguientes recomendaciones:
Suelo
- Ubicarse en zonas con caminos de acceso existentes y limitar la apertura de nuevos accesos.
- Ubicarse en zonas de poca pendiente para minimizar movimientos de tierra.
- Evitar zonas con problemas de erosión.

Hidrología
- Evitar cruzar cursos de agua o zonas con agua embalsada (en la medida de lo posible).

Atmosfera
- El trazado de la línea aérea tendrá en cuenta la distancia con las antenas existentes (para evitar interferencias) y evitará las zonas pobladas (para evitar molestias derivadas del ruido).

Vegetación
- Se evitarán las zonas con vegetación arbolada densa, especialmente si contiene hábitats o flora catalogada.

Fauna
- Se evitarán las zonas de concentración de aves y, en general, las zonas sensibles para las especies amenazadas de fauna.
- Se deberá poner especial atención en no afectar lugares frecuentados y/o habitados por animales terrestres.

Socioeconomía
- La ubicación de la futura línea aérea se alejará de los núcleos de población y de las viviendas dispersas.
- Se evitarán trazados que perjudiquen el valor de las parcelas sobre las que se asientan.
- Se evitarán trazados sobre concesiones mineras.
- Se favorecerán los trazados sobre suelo no urbanizable a excepción de los de alta protección.
- Se evitarán zonas con recursos turísticos o recreativos de interés.
- Se evitará la cercanía de elementos del patrimonio.
- Se evitará que el trazado atraviese espacios naturales protegidos.

Paisaje
- Se favorecerán alternativas en zonas poco transitadas, con un bajo número de observadores.
- Se favorecerán alternativas alejadas de núcleos de población.
- Se eludirá el entorno de elementos patrimoniales con el objeto de reducir el impacto visual.
- Se evitarán zonas dominantes, emplazamientos en zonas frágiles, o trazados que aumenten la visibilidad de la línea.
- Se procurará la instalación de las infraestructuras en áreas que ya hayan sido ocupadas por infraestructuras eléctricas.
8.2.3. DEFINICIÓN DE ALTERNATIVAS

Alternativa 0

La alternativa 0 supondría la no ejecución de las acciones previstas en el proyecto en cuanto a líneas eléctricas vinculadas a la nueva subestación Santa Ponça.

Considerando las líneas proyectadas son concebidas principalmente en subterráneo, la alternativa 0 no revertiría en una situación ambiental más favorable puesto que las afecciones a los factores inicialmente más perjudicados por la instalación de líneas eléctricas (paisaje, fauna, vegetación, población) ostentarían la misma magnitud en cualquiera de los casos. Únicamente en el caso de los subtramos aéreos previstos en algunas líneas, la alternativa 0 supondría un opción más beneficiosa para el medio, si bien la escasa extensión de estos tramos y el entorno en el cual se desarrollarían no permiten establecer motivos de discriminación suficientes desde el punto de vista ambiental para recomendar la no ejecución del proyecto en los términos que se ha planteado.

Cabe considerar, además, que la no instalación de estas líneas implicaría el incumplimiento de las previsiones del Plan Director Sectorial Energético de les Illes Balears (Decreto 96/2005) y, por consiguiente, la no consecución de los objetivos de mallado de la red de transporte de la zona.

8.2.3.1. Línea L/66 kV Palma Nova – Santa Ponça

Se plantea una única alternativa de trazado para esta línea ya que dada su longitud y los condicionantes a los que debe someterse (como el alto grado de desarrollo urbano de la zona donde debe ubicarse) no es posible la definición de alternativas significativamente distintas como para establecer una comparativa desde el punto de vista técnico y ambiental.

Alternativa única

La línea, que se concibe totalmente en subterráneo, transcurre a lo largo de unos 921 m a lo largo de la Calle de Son Bugadelles y conecta la nueva subestación Santa Ponça con la línea a 66 kV S.E. Palma Nova – S.E. Calvià. El trazado propuesto tiene su inicio en una nueva cámara de empalmes a construir para empalmar con la canalización existente de la L/66 kV S.E. Palmanova – S.E. Calvià en la calle Son Bugadelles (cerca de la confluencia con la calle Islas Canarias). A partir de este punto, el trazado sigue la calle durante unos 445 m hasta llegar a otra cámara de empalmes. Desde aquí, el trazado sigue la calle Son Bugadelles unos 170 m más hasta llegar a la rotonda que da acceso a la carretera MA-1410. El trazado cruza la rotonda y se sitúa a unos 30 m al nordeste de la MA-1014 para seguir unos 220 m más para llegar finalmente a los terminales GIS SF6 ubicados en la sala de celdas de la subestación S.E. Santa Ponça (también objeto del presente Estudio de Impacto Ambiental).

A continuación se muestra un cuadro resumen de los valores ambientales destacados referentes a la alternativa de trazado:

<table>
<thead>
<tr>
<th>Criterios ambientales</th>
<th>Alternativa única</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendientes suaves (inferior a 7%)</td>
<td>Sí</td>
</tr>
<tr>
<td>Inundabilidad</td>
<td>No</td>
</tr>
<tr>
<td>Acceso al corredor</td>
<td>Fácil</td>
</tr>
<tr>
<td>Sobrevelo/cruce de cursos de agua</td>
<td>No</td>
</tr>
<tr>
<td>Afección de terrenos</td>
<td>Erial y urbano</td>
</tr>
<tr>
<td>Incidencia sobre espacios naturales protegidos o reconocidos por sus valores naturales</td>
<td>Sí (A.R.I.P.)</td>
</tr>
<tr>
<td>Incidencia áreas de interés faunístico</td>
<td>Posibilidad de afección a Testudo graeca</td>
</tr>
<tr>
<td>Afección áreas de explotación minera</td>
<td>No</td>
</tr>
<tr>
<td>Calidad paisajística</td>
<td>Baja</td>
</tr>
<tr>
<td>Sobrevelo/cruce de otras infraestructuras</td>
<td>Sí</td>
</tr>
</tbody>
</table>
Este trazado único supone el de menor incidencia ambiental ya que sigue carreteras existentes (excepto en los últimos metros antes de llegar a la S.E. Santa Ponça), se alarga la distancia mínima viable entre las dos infraestructuras a conectar (evitando de este modo la afección a terrenos no alterados y reduciendo la superficie afectada por la instalación de la infraestructura) y coincide, en buena medida, con el trazado de otros servicios existentes. Además, al tratarse de un trazado totalmente subterráneo se limitan en gran manera las incidencias de tipo paisajístico.

Cabe también tener presente que el trazado no afecta a elementos del patrimonio cultural; concesiones mineras, recursos turísticos y que, dado el carácter urbano y periurbano de la zona por donde transcurre el trazado, no son previsibles incidencias de relevancia sobre el medio físico, la vegetación y la fauna. El trazado deberá cruzar un pequeño reguero de agua innominado que cruza la calle Son Bugadelles y sigue en dirección suroeste de manera paralela a la calle Islas Canarias.

8.2.3.2. Línea L/66 kV Calvià – Santa Ponça

Se plantea una única alternativa de trazado para esta línea ya que dada su muy reducida longitud y los condicionantes a los que debe someterse, no es posible la definición de alternativas significativamente distintas como para establecer una comparativa desde el punto de vista técnico y ambiental.

Alternativa única

La línea se concibe totalmente en subterráneo y tiene una longitud de unos 100 m, la totalidad de los cuales discurren por la parcela donde se ubica la S.E. Santa Ponça. La propuesta de trazado de la línea se inicia en la canalización existente de la L/66 kV S.E. Valldurgent – S.E. Calvià con la que debe empalmar y continúa de forma paralela a la carretera MA-1014 unos 10 m hasta llegar a una cámara de empalmes a construir. Desde aquí, el trazado continuará unos 5 m más para posteriormente cambiar de dirección y seguir unos 70 m hasta llegar a los terminales GIS SF$_6$ ubicados en la sala de celdas de la subestación S.E. Santa Ponça (también objeto del presente Estudio de Impacto Ambiental).

A continuación se muestra un cuadro resumen de los valores ambientales destacados referentes a la alternativa de trazado:

<table>
<thead>
<tr>
<th>Criterios ambientales</th>
<th>Alternativa única</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendientes suaves (inferior a 7%)</td>
<td>Sí</td>
</tr>
<tr>
<td>Inundabilidad</td>
<td>No</td>
</tr>
<tr>
<td>Acceso al corredor</td>
<td>Fácil</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de cursos de agua</td>
<td>No</td>
</tr>
<tr>
<td>Afección de terrenos</td>
<td>Erial</td>
</tr>
<tr>
<td>Incidencia sobre espacios naturales protegidos o reconocidos por sus valores naturales</td>
<td>Si (A.R.I.P.)</td>
</tr>
<tr>
<td>Incidencia áreas de interés faunístico</td>
<td>Presencia de Testudo graeca en la zona</td>
</tr>
<tr>
<td>Afección áreas de explotación minera</td>
<td>No</td>
</tr>
<tr>
<td>Calidad paisajística</td>
<td>Baja</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de otras infraestructuras</td>
<td>Sí</td>
</tr>
<tr>
<td>Distancia (aproximada) a núcleos de población o urbanizaciones más cercanos</td>
<td>< 100 m</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de vías pecuarias</td>
<td>No</td>
</tr>
</tbody>
</table>
Este trazado único supone el de menor incidencia ambiental ya que representa la distancia mínima viable entre las dos infraestructuras a conectar (reduciendo la superficie afectada por la instalación de la infraestructura) y coincide con el trazado de otros servicios existentes o previstos y también objeto del presente estudio.

Otros factores a considerar son que, al tratarse de un trazado totalmente subterráneo las incidencias de tipo paisajístico son muy limitadas y que la totalidad de la línea se encuentra en la misma parcela (de carácter periurbano) donde se ubica la S.E. Santa Ponça. Consiguientemente, no se afecta a elementos patrimoniales, cursos de agua, concesiones mineras, recursos turísticos ni son previsibles incidencias ambientales relevantes sobre el medio físico, la vegetación y la fauna.

8.2.3.3. Línea L/66 kV Santa Ponça – Andratx

Como en los casos anteriores y de acuerdo con lo apuntado en el apartado 6.2.1 del presente documento, se plantea una única alternativa de trazado para esta línea ya que dada su longitud y los condicionantes a los que debe someterse (como el alto grado de desarrollo urbano de la zona donde debe ubicarse) no es posible la definición de alternativas significativamente distintas como para establecer una comparativa desde el punto de vista técnico y ambiental.

Alternativa única

Esta línea consta de dos tramos (un tramo aéreo y otro subterráneo) con una longitud total de unos 1.320 m.

El tramo subterráneo se inicia en la subestación Santa Ponça (en los terminales interiores GIS SF6), de la que sale por su lado oeste después de unos 90 m. El trazado sigue unos 130 m hasta cruzar el Camí des Capdell. Desde aquí, el trazado rodea la rotonda de la carretera M-1014, pasa entre ésta y la subestación Santa Ponça E.C. y sigue paralela a la M-1014 (y a la zanja de una línea ya instalada) hasta encontrar la rotonda que conecta esta carretera con las calles de les Illes Balears y de Sant Tomàs. A partir de este punto, el trazado cambia de dirección dos veces (primero al noroeste y luego al suroeste para, después de unos 280 m, llegar al nuevo apoyo de paso aéreo a subterráneo T.1 donde termina el tramo subterráneo.

El tramo aéreo se inicia donde finaliza el tramo subterráneo, en el nuevo apoyo de paso aéreo a subterráneo T.1 (situado fuera de la traza actual de la línea existente S.E. Andratx – S.E. Calvià) y discurre unos 236 m en dirección noroeste hasta el apoyo a mantener T.2 Está previsto mantener los conductores existentes.

A continuación se muestra un cuadro resumen de los valores ambientales destacados referentes a la alternativa de trazado:

<table>
<thead>
<tr>
<th>Criterios ambientales</th>
<th>Alternativa única</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendientes suaves (inferior a 7%)</td>
<td>Sí</td>
</tr>
<tr>
<td>Inundabilidad</td>
<td>No</td>
</tr>
<tr>
<td>Acceso al corredor</td>
<td>Fácil</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de cursos de agua</td>
<td>No</td>
</tr>
<tr>
<td>Afección de terrenos</td>
<td>Erial y cultivos</td>
</tr>
<tr>
<td>Incidencia sobre espacios naturales protegidos o reconocidos por sus valores naturales</td>
<td>Si (A.R.I.P.)</td>
</tr>
<tr>
<td>Incidencia áreas de interés faunístico</td>
<td>Posibilidad de afeción a Testudo graeca</td>
</tr>
<tr>
<td>Afección áreas de explotación minera</td>
<td>No</td>
</tr>
<tr>
<td>Calidad paisajística</td>
<td>Baja - Media</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de otras infraestructuras</td>
<td>Sí</td>
</tr>
</tbody>
</table>
8.2.3.4. Línea L/66 kV Santa Ponça – Sant Agustí
La línea eléctrica tiene por objeto conectar la nueva subestación a 220/132/66 kV Santa Ponça con la línea L/66 kV Sant Agustí – Calvià. En este caso, se presentan dos alternativas cuya mayor diferencia es la longitud y la proximidad a la A.N.E.I. más cercana. En ambos casos, exceptuando los primeros y últimos metros, el trazado se realiza por suelo urbano y utilizando calles existentes como vía de paso.

Alternativa A
La alternativa A de la línea L/66 kV Santa Ponça – Sant Agustí está prevista en subterráneo y tiene una longitud total de unos 950 m. El trazado se iniciará en los terminales GIS SF₆ ubicados en la sala de celdas de la subestación de S.E. Santa Ponça. Desde aquí, saldrá de la subestación Santa Ponça por el suroeste, recorrerá unos 160 m en paralelo a la carretera MA-1014 y cruzará la rotonda de esta misma carretera para entrar en la calle Son Bugadelles que seguirá durante unos 610 m (de forma paralela al trazado de la línea L/66 kV Palma Nova – Santa Ponça) hasta llegar aproximadamente al cruce con la calle Islas Canarias. A partir de este punto, el trazado continuará fuera de la calle, cruzará un pequeño reguero innominado y seguirá unos metros hasta pasar a aéreo y contactar con la línea existente S.E. San Agustín – S.E. Calvià.

El trazado propuesto por la alternativa A discurre por terrenos con la siguiente calificación urbanística: Suelo Rústico S.R.-4 (Área de interés agrario tradicional); Suelo Rústico S.R.-1 (Área de interés natural) y Sistema General Viario (S.G.V.). Además de su clasificación urbanística, el suelo por el cual discurre el trazado tiene las consideraciones de Área Rural de Interés Paisajístico (A.R.I.P.); de Área Natural de Especial Interés (A.N.E.I.) reconocida como Parque Natural Municipal por el planeamiento urbanístico de Calvià; de Suelo rústico correspondiente a una Área de Transición (A.T.) y de Área de protección Posterior (A.P.P.)

Alternativa B
La línea, en esta alternativa B, consta de dos tramos (un tramo aéreo y otro subterráneo) con una longitud total de unos 1.565 m y coincide en parte con el trazado propuesto en la alternativa A, variando a partir del cruce entre las calles de Son Bugadelles y la calle Illes Balears.
El tramo subterráneo de unos 1.265 m de longitud, que tendrá su inicio en los terminales GIS SF₆ ubicados en la sala de celdas de la subestación de S.E. Santa Ponça, saldrá de la subestación Santa Ponça por el suroeste, recorrerá unos 160 m paralelo a la carretera MA-1014 y cruzará la rotonda de esta misma carretera para entrar en la calle Son Bugadelles que seguirá por unos 115 m hasta llegar a la altura de la calle Illes Balears. En este punto, el trazado girará al suroeste para seguir la susodicha calle Illes Balears hasta el cruce con la calle Madalena (unos 310 m después). El trazado continuará 465 m más por esta calle hasta cruzar la calle Canarias. Posteriormente, cruzará el pequeño reguero que discurre paralelo esta calle para, finalmente, llegar al apoyo de paso aéreo a subterráneo T.18 a instalar donde finalizará.

El tramo aéreo empezará en el apoyo de paso aéreo a subterráneo T.18 a instalar debajo de la traza actual de la línea existente S.E. San Agustín – S.E. Calvià (y donde finaliza el tramo subterráneo) y seguirá en dirección noreste unos 300 m hasta el apoyo a mantener T.17. Los conductores existentes se mantendrán. Cabe mencionar que el trazado aéreo es, en realidad, el parte del tramo aéreo ya existente de la línea Sant Agustí – Calvià con el único cambio del nuevo apoyo T.18.

El trazado propuesto por la alternativa B discurre por terrenos con la siguiente calificación urbanística: Suelo Rústico S.R.-4 (Área de interés agrario tradicional); Suelo Rústico S.R.-5 (Área de ruedo agrario); Suelo Urbano y Sistema General Viario (S.G.V.). Además de su clasificación urbanística, el suelo por el cual discurre el trazado tiene las consideraciones de Área Rural de Interés Paisajístico (A.R.I.P.); de Suelo rústico correspondiente a un Área de Transición (A.T.) y de Área de protección Posterior (A.P.P.).

A continuación se muestra un cuadro resumen de las diferentes alternativas respecto a los valores ambientales destacados en el estudio:

<table>
<thead>
<tr>
<th>Criterios ambientales</th>
<th>Alternativa A</th>
<th>Alternativa B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendientes suaves (inferior a 7%)</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Inundabilidad</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Acceso al corredor</td>
<td>Fácil</td>
<td>Fácil</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de cursos de agua</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Afección de terrenos</td>
<td>Principalmente urbano; puntualmente erial</td>
<td>Principalmente urbano; puntualmente erial y cultivos</td>
</tr>
<tr>
<td>Incidencia sobre espacios naturales protegidos o reconocidos por sus valores naturales</td>
<td>Si (A.R.I.P. y A.N.E.I.)</td>
<td>Si (A.R.I.P.)</td>
</tr>
<tr>
<td>Incidencia áreas de interés faunístico</td>
<td>Posibilidad de afección a Testudo graeca</td>
<td>Posibilidad de afección a Testudo graeca</td>
</tr>
<tr>
<td>Afección áreas de explotación minera</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Calidad paisajística</td>
<td>Baja - Media</td>
<td>Baja – Media</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de otras infraestructuras</td>
<td>Sí</td>
<td>Sí</td>
</tr>
<tr>
<td>Distancia (aproximada) a núcleos de población o urbanizaciones más cercanos</td>
<td>< 100 m</td>
<td>< 100 m</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de vías pecuarias</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Afección a elementos del patrimonio histórico</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

Por todo lo expuesto, y considerando especialmente la diferente incidencia de las alternativas planteadas sobre los espacios naturales protegidos del ámbito de estudio, se considera que la alternativa B es la más favorable desde el punto de vista ambiental.
8.2.3.5. Línea L/220 kV Santa Ponça – Santa Ponça E.C.

Se plantea una única alternativa de trazado puesto que la distancia que debe ser cubierta por la línea (la existente entre las subestaciones a conectar) es tan corta que no permite la definición de alternativas con sentido significativamente distintas como para establecer una comparativa desde el punto de vista técnico y ambiental.

Alternativa única

La instalación estará constituida por un tramo subterráneo que tendrá su inicio en los terminales interiores tipo GIS SF₆ a instalar dentro de la nueva subestación Santa Ponça. En el interior de la subestación, la traza discurrirá dentro de las canalizaciones habilitadas hasta salir del recinto por el lado suroeste de la subestación.

Una vez fuera de la subestación, la traza discurrirá paralela a la carretera MA-1014 durante unos 130 m (y a una distancia de unos 50 m) para después cruzar perpendicularmente el Camí des Capdell y llegar a la nueva subestación Santa Ponça Estación Conversora. Está previsto que los circuitos entren en el recinto de la subestación Santa Ponça Estación Conversora por el lado noreste de la misma y que, desde allí, la traza discurra por el interior de la subestación mediante las canalizaciones internas existentes destinadas a tal efecto hasta los terminales interiores tipo GIS SF₆.

A continuación se muestra un cuadro resumen de los valores ambientales destacados referentes a la alternativa de trazado:

<table>
<thead>
<tr>
<th>Criterios ambientales</th>
<th>Alternativa única</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendientes suaves (inferior a 7%)</td>
<td>Sí</td>
</tr>
<tr>
<td>Inundabilidad</td>
<td>No</td>
</tr>
<tr>
<td>Acceso al corredor</td>
<td>Fácil</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de cursos de agua</td>
<td>No</td>
</tr>
<tr>
<td>Afección de terrenos</td>
<td>Erial</td>
</tr>
<tr>
<td>Incidencia sobre espacios naturales protegidos o reconocidos por sus valores naturales</td>
<td>Sí (A.R.I.P.)</td>
</tr>
<tr>
<td>Incidencia áreas de interés faunístico</td>
<td>Posibilidad de afección a Testudo graeca</td>
</tr>
<tr>
<td>Afección áreas de explotación minera</td>
<td>No</td>
</tr>
<tr>
<td>Calidad paisajística</td>
<td>Baja</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de otras infraestructuras</td>
<td>Sí</td>
</tr>
<tr>
<td>Distancia (aproximada) a núcleos de población o urbanizaciones más cercanos</td>
<td>< 100 m</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de vías pecuarias</td>
<td>No</td>
</tr>
<tr>
<td>Afección a elementos del patrimonio histórico</td>
<td>No</td>
</tr>
</tbody>
</table>

Este trazado único supone el de menor incidencia ambiental ya que representa la distancia mínima viable entre las dos infraestructuras a conectar y coincide con el trazado de otros servicios previstos y también objeto del presente estudio.

Otros factores a considerar son que las incidencias de tipo paisajístico son limitadas ya que se trata de una línea es de carácter subterráneo, que no se afecta a elementos patrimoniales, cursos de agua, concesiones mineras o recursos turísticos y que, dada la naturaleza entre urbana y periurbana del sector y la escasa longitud del trazado, no son previsibles incidencias destacables sobre el medio físico, la vegetación y la fauna.

8.2.3.6. Línea L/220 kV Valldurgent – Santa Ponça

Se plantea una única alternativa puesto que la propia naturaleza de la actuación así como la longitud de la línea prevista no permiten la definición de alternativas significativamente distintas como para establecer una comparativa desde el punto de vista técnico y ambiental.
Alternativa única

La alternativa única propuesta en este caso consiste en un tramo subterráneo que tendrá su inicio en los terminales exteriores del nuevo apoyo T.25 de conversión de aéreo a subterráneo de lo que actualmente es la 66 kV S.E. Valldur sergeant – S.E. Calvià que se encuentran situados dentro de la parcela que acogerá la futura subestación Santa Ponça. Desde allí, y a través de una nueva canalización situada íntegramente en el interior de la propia subestación (rodeándola por el noroeste y el suroeste), los circuitos se dirigirán a los terminales GIS SF6 ubicados en la sala de celdas de la subestación Santa Ponça.

Este trazado único supone el de menor incidencia ambiental ya que representa la distancia mínima viable entre las dos infraestructuras a conectar (reduciendo la superficie afectada por la instalación de la infraestructura).

Otros factores a considerar son que la totalidad de la línea se encuentra en la misma parcela (de carácter periurbano) donde se ubica la S.E. Santa Ponça. Consiguientemente, no se afecta a elementos patrimoniales, cursos de agua, concesiones mineras, recursos turísticos ni son previsibles incidencias ambientales relevantes sobre el medio físico, la vegetación y la fauna.

A continuación se muestra un cuadro resumen de los valores ambientales destacados referentes a la alternativa de trazado:

<table>
<thead>
<tr>
<th>Criterios ambientales</th>
<th>Alternativa única</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pendientes suaves (inferior a 7%)</td>
<td>Sí</td>
</tr>
<tr>
<td>Inundabilidad</td>
<td>No</td>
</tr>
<tr>
<td>Acceso al corredor</td>
<td>Fácil</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de cursos de agua</td>
<td>No</td>
</tr>
<tr>
<td>Afección de terrenos</td>
<td>Erial</td>
</tr>
<tr>
<td>Incidencia sobre espacios naturales protegidos o</td>
<td>Si (A.R.I.P.)</td>
</tr>
<tr>
<td>reconocidos por sus valores naturales</td>
<td></td>
</tr>
<tr>
<td>Incidencia áreas de interés faunístico</td>
<td>Presencia de</td>
</tr>
<tr>
<td></td>
<td>Testudo graeca en</td>
</tr>
<tr>
<td></td>
<td>la zona</td>
</tr>
<tr>
<td>Afección áreas de explotación minera</td>
<td>No</td>
</tr>
<tr>
<td>Calidad paisajística</td>
<td>Baja</td>
</tr>
<tr>
<td>Sobrevuelo/cruce de otras infraestructuras</td>
<td>Sí</td>
</tr>
<tr>
<td>Distancia (aproximada) a núcleos de población o</td>
<td>< 100 m</td>
</tr>
<tr>
<td>urbanizaciones más cercanos</td>
<td></td>
</tr>
<tr>
<td>Sobrevuelo/cruce de vías pecuarias</td>
<td>No</td>
</tr>
<tr>
<td>Afección a elementos del patrimonio histórico</td>
<td>No</td>
</tr>
</tbody>
</table>

8.2.4. JUSTIFICACIÓN DE LA ALTERNATIVA DE MENOR IMPACTO

- Para la subestación a 220/132/66 kV Santa Ponça se concibe la alternativa propuesta como única opción viable debido a que es la única contemplada por la revisión del Plan Director Sectorial Energético de las Baleares.

- Para las líneas L/66 kV Palma Nova – Santa Ponça; L/66 kV Calvià – Santa Ponça; L/66 kV Santa Ponça – Andratx; L/220 kV Santa Ponça – Santa Ponça E.C. y conversión de aérea a subterránea de la L/220 kV Valldur sergeant – Santa Ponça, se concibe las alternativas propuestas para cada una de estas líneas como única opción viable en cada caso debido a que, como en el caso de la S.E. Santa Ponça, son infraestructuras contempladas por la revisión del Plan Director Sectorial Energético de las Baleares y la escasa distancia existente entre el punto de partida y el punto de destino de las líneas hace innecesario el planteamiento de alternativas. Esto es así ya que con recorridos tan cortos en entornos industriales y periurbanos, no se pueden conseguir diferencias significativas entre propuestas de alternativas de trazado que permitan realizar una comparativa diferenciada desde el punto de vista técnico y ambiental.
- Para la L/66 kV Santa Ponça - Sant Agustí se considera la alternativa B como la mejor de las dos planteadas dado que (entre otras consideraciones):
 - La alternativa A discurre, en sus últimos metros por la A.N.E.I. de la Serra de Tramuntana.
 - La alternativa A entra en conflicto con la normativa urbanística.
 - El trazado de la alternativa B coincide con menos canalizaciones subterráneas.
9. SÍNTESIS DEL INVENTARIO AMBIENTAL DETALLADO

Una vez determinado el emplazamiento de la subestación y las trazas de las líneas eléctricas en proyecto, se analiza con más detalle un ámbito más reducido, pero con la superficie suficiente que permita analizarlo y poder determinar las afecciones de la solución adoptada.

9.1. SUBESTACIÓN A 220/132/66 KV SANTA PONÇA

El inventario ambiental de este apartado incluye la parcela donde debe instalarse la futura la S.E. Santa Ponça y el suelo que albergará las líneas incluidas en su entorno inmediato: L/220 kV Valldurgent – Santa Ponça y L/66 kV Calvià – Santa Ponça.

9.1.1. SUELO

La litología del sector consiste básicamente en limolitas y arcillas rojas.

El emplazamiento ocupa una parcela relativamente llana. La mayor parte de la zona tiene pendientes en el rango del 5 al 10%.

No se le atribuyen riesgos geotécnicos ni de inundación a la zona, aunque el extremo norte del la parcela se encuentra dentro de un área de prevención de riesgos (A.P.R.).

No se ha detectado ningún elemento (geotopo) o zona (geozona) de interés geológico en el sector.

9.1.2. HIDROLOGÍA

La parcela no afecta ningún curso ni masa de agua superficial.

La parcela se encuentra en la unidad hidrogeológica de Calvià (según el Plan Hidrológico de las Islas Baleares). Se trata de un acuífero conformado en sustrato básicamente calizo (en zonas recubierto por aluviales cuaternarios) cuya recarga se produce exclusivamente por la infiltración del agua de lluvia.

9.1.3. VEGETACIÓN

La cobertura vegetal del emplazamiento consiste en vegetación herbácea ruderal y arvense, con abundancia de especies propias de espacios alterados y sujetos a perturbaciones frecuentes (como caléndula (Calendula officinalis), campánula (Campanula erinum), fenazo (Brachypodium retusum), estrella (Hyoseris radiata)... mezclada con vegetación de porte arbustivo (lentisco (Pistacia lentiscus), aladierno (Rhamnus alaternus), acebuche (Olea europaea)... y arbóreo, básicamente pies aislados de pinos carrascos (Pinus halepensis) así como algunos ejemplares de algarrobos (Ceratonia siliqua) o almendros (Prunus dulcis). En el caso de los algarrobos y los almendros, son claramente minoritarios (5 pies de algarrobos y unos 15 almendros) y se corresponden a pies muy viejos y en mal estado.

La densidad de vegetación arbórea, que se encuentra repartida de forma irregular por la parcela, es baja, de unos 50 pies/ha. En el extremo norte de la parcela, fuera de la zona afectada por la construcción de la subestación, se encuentran una pequeña zona (de unas 0,4 ha) ocupada por las primeras estribaciones de los pinares de pino carrasco que se pueden encontrar en los relieves existentes alrededor de Santa Ponça.
9.1.4. FAUNA
La antropización de la parcela (que está vallada y que contiene infraestructuras eléctricas) conjuntamente con a ausencia de cursos fluviales disminuye la posibilidad de residencia y uso de la zona por parte de fauna de interés, acogiendo básicamente a especies de tipo generalista. Pese a todo, se ha confirmado la presencia de la Tortuga Mora (*Testudo graeca*) en las proximidades.

9.1.5. MEDIO SOCIOLOGICO
La parcela se encuentra en terrenos del municipio de Calvià. El núcleo habitado más cercano a la subestación (la urbanización Galatzó) se encuentra a poco más de 1 Km. al suroeste. Hay varias edificaciones dispersas (viviendas unifamiliares aisladas) que se encuentran a unos pocos centenares de metros de la ubicación de la subestación.

La parcela no afecta a infraestructuras de comunicación. La única infraestructura presente en la parcela es la L/66 kV Valldurgent – Calvià, una línea eléctrica (aislada a 220 kV).

9.1.6. ORDENACIÓN DEL TERRITORIO Y PLANEAMIENTO URBANÍSTICO
Según el planeamiento municipal de Calvià, el emplazamiento de la S.E. Santa Ponça se encuentra en suelo considerado Suelo Urbano S.R.-4 (Área de interés agrario tradicional) y Sistema General Viario.

9.1.7. ESPACIOS NATURALES PROTEGIDOS Y ZONAS DE INTERÉS NATURAL
La ubicación seleccionada tiene la consideración de Área Rural de Interés Paisajístico (A.R.I.P.). La ubicación de la S.E. Santa Ponça no coincide con otros Espacios Naturales Protegidos según legislación vigente.

En cuanto a otras figuras de protección, la zona goza de la consideración de Suelo rústico correspondiente a un Área de Transición (A.T.) y de Área de protección Posterior (A.P.P.).

9.1.8. PATRIMONIO HISTÓRICO – CULTURAL
La ubicación seleccionada no afectará a elementos del patrimonio arqueológico o arquitectónico catalogados.

9.1.9. PAISAJE
De las dos Unidades Descriptivas del Paisaje (U.D.P.) definidas para la zona de estudio, la nueva subestación la U.D.P. de la Bahía de Palma, una unidad formada por áreas agrícolas (básicamente plantaciones de algarrobos) junto a zonas urbanizadas y áreas industriales. Se trata de zonas paisajísticamente muy pobres y más próximas al ámbito urbano que no al rural por lo que, en general, supone un entorno muy antropizado con una calidad paisajística baja.

9.2. LÍNEAS ELÉCTRICAS ASOCIADAS A LA S.E. SANTA PONÇA

9.2.1. SUELO
El trazado de las líneas discurre por una zona de litología consistente en limolitas y arcillas rojas.
Los trazados discurren por terrenos relativamente llanos (con pendientes entre el 0 y el 5%). A la zona no se le atribuyen riesgos geotécnicos, de inundación, de erosión, de desprendimientos o de incendio.

No se ha detectado ningún elemento (geotopo) o zona (geozona) de interés geológico en el sector.

9.2.2. HIDROLOGÍA
El único curso de agua cruzado por el trazado de las líneas en estudio (por la L/66 kV Santa Ponça – Sant Agustí) es un pequeño reguero innominado paralelo a la calle Islas Canarias del polígono industrial de Calviá.

Los trazados se encuentran en la unidad hidrogeológica de Calviá, un acuífero de sustrato básicamente calizo (en zonas recubierto por aluviales cuaternarios) cuya recarga se produce por infiltración de agua de lluvia.

9.2.3. VEGETACIÓN
Dejando a un lado las L/220 kV Valldurgent – Santa Ponça y L/66 Calvià – Santa Ponça, cuyo trazado discurre enteramente dentro del ámbito de la S.E. Santa Ponça, la vegetación que se encuentra en los trazados de las líneas en proyecto es la siguiente:

L/220 kV Santa Ponça – Santa Ponça E.C. - La vegetación en el trazado es escasa y de poco valor ecológico y se limita a la vegetación ruderal (básicamente herbácea) presente en el campo improductivo que se encuentra entre los emplazamientos de las futuras S.E. Santa Ponça y S.E. Santa Ponça E.C.

L/66 kV Santa Ponça – Andratx- La L/66 kV Santa Ponça – Andratx no discurre por calles y carreteras pavimentadas sino que lo hace, en su mayor parte, por campos de cultivo. Así, la vegetación presente en el trazado consiste básicamente en algarrobos y en algunas especies herbáceas de carácter arvense asociadas a estos cultivos.

L/66 kV Santa Ponça – Sant Agustí - En sus primeros metros, la línea discurre por el campo improductivo situado al oeste del emplazamiento de la S.E. Santa Ponça (al igual que las dos líneas anteriores). Posteriormente, el trazado discurre en subterráneo por calles asfaltadas del polígono industrial de Calviá, con una vegetación virtualmente inexistente. Los últimos metros del trazado discurren por un algarrobal.

L/66 kV Palmanova – Santa Ponça- Dejando a un lado sus primeros metros, que como en el resto de líneas discurren por el campo improductivo situado al oeste del emplazamiento de la S.E. Santa Ponça, el trazado de esta línea discurre en su totalidad por calles asfaltadas del polígono industrial de Calviá, con una vegetación virtualmente inexistente.

9.2.4. FAUNA
Dado el carácter eminentemente urbano de la mayor parte de la zona, no es previsible la existencia de fauna de interés. Incluso si se consideran las zonas con características más naturales de entre las escogidas para los trazados (los algarrobales situados al norte de la MA-1014 por donde transcurre la L/66 kV Andratx – Santa Ponça), la antropización de la parcela y la proximidad con zonas urbanas limitan la fauna existente a especies de tipo generalista y a la presencia, solamente ocasional, de especies de mayor interés. La excepción a esta regla general viene causada por la presencia confirmada de individuos de Tortuga Mora (Testudo graeca) en la zona alrededor de la subestación Santa Ponça.
9.2.5. MEDIO SOCIOLOGICO

La totalidad de los trazados previstos se encuentran en terrenos del municipio de Calvià.

Los núcleos habitados más cercanos a las líneas eléctricas son:

L/220 kV Santa Ponça – Santa Ponça E.C. - La urbanización Galatzó se encuentra a poco más de 1 Km al suroeste. Hay varias viviendas unifamiliares aisladas a unos pocos centenares de metros del trazado de la línea.

L/66 kV Andratx – Santa Ponça - La urbanización Galatzó se encuentra a unos 200 m al sur de su tramo aéreo. El trazado discurre paralelo (a una distancia de unos 100 m) al polígono industrial de Calvià durante toda la longitud del mismo. Además, hay varias viviendas unifamiliares aisladas que se encuentran a unos pocos centenares de metros del inicio del trazado de la línea (en las cercanías de la S.E. Santa Ponça).

L/66 kV Santa Ponça – Sant Agustí - La urbanización Galatzó se encuentra unos 700 m al suroeste. Además, el trazado de esta línea transcurre a lo largo de la mayor parte de su recorrido por suelo urbano perteneciente al polígono industrial de Calvià. Hay varias viviendas unifamiliares aisladas a pocos centenares de metros del inicio y del final de la línea.

En cuanto a infraestructuras y servicios:

L/220 kV Santa Ponça – Santa Ponça E.C. - El trazado cruza el Camí des Capdell y transcurre por las futuras subestaciones S.E. Santa Ponça y S.E. Santa Ponça E.C.

L/66 kV Andratx – Santa Ponça - Dentro del trazado de la línea se encuentra el Camí des Capdell, la línea L/66 kV Andratx – Calvià con la cual debe conectarse así como las futuras subestaciones S.E. Santa Ponça y S.E. Santa Ponça E.C. Así mismo, está previsto que, paralelo al trazado, discurran dos futuros circuitos (Península – Santa Ponça y Eivissa – Santa Ponça).

L/66 kV Santa Ponça – Sant Agustí - Además de por la S.E. Santa Ponça, el trazado discurre por diversas infraestructuras viarias: Carretera MA-1014 así como las calles Son Bugadelles, Illes Balears y Madalena del polígono industrial de Calvià. A parte de la L/66 kV Palmanova – Calvià y de la L/66 kV Palmanova – Santa Ponça (esta última objeto de este mismo estudio), que deben ser soterradas en la calle de Son Bugadelles. Al transcurrir por una calle de un polígono industrial, es probable la existencia de servicios soterrados para el funcionamiento del mismo (alambrado, telefonía...).

L/66 kV Palmanova – Santa Ponça - Después de dejar la S.E. Santa Ponça, el trazado de la línea discurre por las siguientes infraestructuras viarias: Carretera MA-1014 y calle de Son Bugadelles (que marca el límite noreste del polígono industrial de Calvià). Por la calle de Son Bugadelles deben soterrarse también la L/66 kV Palmanova – Calvià y la L/66 kV Santa Ponça – Sant Agustí (esta última objeto de este mismo estudio). Al transcurrir por una calle de un polígono industrial, es probable la existencia de servicios soterrados para el funcionamiento del mismo (alambrado, telefonía...).

El uso del suelo destinado para los trazados de las distintas líneas previstas es diverso: y varía entre suelo destinado a infraestructuras eléctricas, suelo viario, improductivo (vegetación herbácea ruderal) y agrario (algarrobal)
9.2.6. ORDENACIÓN DEL TERRITORIO Y PLANEAMIENTO URBANÍSTICO

Los trazados previstos pasan por suelos con las siguientes calificaciones según el planeamiento municipal de Calviá:

L/66 kV Andratx – Santa Ponça - Suelo Rústico S.R.-4 (Área de interés agrario tradicional) y Sistema General Viario.

L/66 kV Santa Ponça – Sant Agustí - Suelo Rústico S.R.-4 (Área de interés agrario tradicional); Suelo Rústico S.R.-5 (Área de ruedo agrario); Sistema General Viario y de Suelo Urbano.

L/66 kV Palmanova – Santa Ponça - Suelo Rústico S.R.-4 (Área de interés agrario tradicional) y Sistema General Viario.

9.2.7. ESPACIOS NATURALES PROTEGIDOS Y ZONAS DE INTERÉS NATURAL

Los trazados previstos pasan por suelos con el siguiente grado de protección:

L/220 kV Santa Ponça – Santa Ponça E.C. - El trazado discurre por suelo considerado como Área Rural de Interés Paisajístico (A.R.I.P.). No se discurre por otros espacios naturales protegidos por la legislación vigente. En cuanto a otras figuras de protección, la zona es considerada Suelo rústico correspondiente a un Área de Transición (A.T.) y de Área de protección Posterior (A.P.P.).

L/66 kV Andratx – Santa Ponça - El trazado discurre por suelo considerado como Área Rural de Interés Paisajístico (A.R.I.P.). No se discurre por otros espacios naturales protegidos por legislación vigente. En cuanto a otras figuras de protección, la zona goza de la consideración de Suelo rústico correspondiente a un Área de Transición (A.T.) y de Área de protección Posterior (A.P.P.).

L/66 kV Santa Ponça – Sant Agustí - Los primeros 120 metros del trazado discurren por un suelo considerado como Área Rural de Interés Paisajístico (A.R.I.P.). No se discurre por otros Espacios Naturales Protegidos según legislación vigente. En cuanto a otras figuras de protección, los primeros 120 metros del trazado también gozan de la consideración de Suelo rústico correspondiente a un Área de Transición (A.T.) y de Área de protección Posterior (A.P.P.).

L/66 kV Palmanova – Santa Ponça - Como en la línea anterior, los primeros 120 metros del trazado discurren por suelo considerado como Área Rural de Interés Paisajístico (A.R.I.P.). No se discurre por otros Espacios Naturales Protegidos según legislación vigente. En cuanto a otras figuras de protección, los primeros 120 metros del trazado también gozan de la consideración de Suelo rústico correspondiente a un Área de Transición (A.T.) y de Área de protección Posterior (A.P.P.).

9.2.8. PATRIMONIO HISTÓRICO – CULTURAL

El trazado de las líneas no afectará a elementos del patrimonio arqueológico o arquitectónico catalogados.

9.2.9. PAISAJE

Como en el caso de la subestación, de las dos Unidades Descriptivas del Paisaje (U.D.P.) definidas para la zona de estudio, la nueva subestación la U.D.P. de la Bahía de Palma, una unidad formada por áreas agrícolas (básicamente plantaciones de algarrobos) junto a zonas urbanizadas y áreas industriales. Se trata de zonas paisajísticamente muy pobres y más próximas al ámbito urbano que no al rural por lo que, en general, supone un entorno muy antropizado con una calidad paisajística baja.
10. MEDIDAS PREVENTIVAS Y CORRECTORAS

En este capítulo se resumen las principales medidas preventivas y correctoras definidas en el Estudio de Impacto Ambiental, aplicadas o a aplicar en las fases de proyecto, construcción, operación y mantenimiento de la subestación y las líneas en proyecto.

10.1. MEDIDAS PREVENTIVAS

La principal medida preventiva, y la que mayor repercusión va a tener, es la elección del emplazamiento óptimo tanto para la subestación como para el trazado de las líneas eléctricas en proyecto, de acuerdo con los condicionantes ambientales descritos en capítulos anteriores. De esta forma, ha sido seleccionada la alternativa que genera un menor impacto sobre el conjunto de los elementos del medio.

10.1.1. MEDIDAS PREVENTIVAS EN LA FASE DE DISEÑO PARA LA SUBESTACIÓN

A parte de la elección del emplazamiento óptimo para la subestación (realizada a partir de criterios como la facilidad de acceso, la pendiente del terreno, la posible existencia de riesgos geológicos, el medio natural de la zona, la presencia de zonas habitadas...), las principales medidas preventivas adoptadas durante la fase de diseño han sido las siguientes:

- Realización de la subestación en como blindada interior tipo GIS.
- Minimizar la apertura de accesos, recurriendo al acondicionamiento de accesos antes que a su apertura.
- Escoger la parte sur de la parcela para instalar la subestación y diseñar la misma en dos niveles para minimizar los movimientos de tierra. Asimismo el proyecto prevé:
 - Realizar los estudios precisos (antes del inicio de los trabajos de explanación) para minimizar los movimientos de tierra.
 - Que el diseño de los taludes de desmonte y terraplén que rodearán a la explanación tengan unas pendientes reducidas, menores, si es posible, al 30 % (para evitar el inicio de procesos erosivos).
 - Que el acabado de los taludes forme superficies homogéneas, acordes con las formas naturales del terreno, evitando, en la medida de lo posible, crear en las cabeceras cambios bruscos de pendiente, aristas y formas antinaturales.
 - Retirar y hacer acopio de la tierra vegetal en una zona adecuada donde no se vea afectada por las obras.
- Procurar instalar el parque de la maquinaria que se emplee en la obra en la superficie de explanación.
- Diseñar el parque de la subestación de forma que las distancias a las viviendas y a otros elementos del entorno sean las óptimas, reduciendo algunos de los impactos imputables a la subestación.
- El diseño de la subestación prevé la adopción de medidas para evitar la contaminación del suelo, el agua o el aire por vertidos de aceites, grasas y gases:
 - Durante la fase de obras se prohíbe a los contratistas el vertido de todo tipo de sustancias al suelo.
 - Habilitación un área con una cubierta impermeable para recoger los residuos que se generen en los cambios de aceite.
La maquinaria de la obra deberá estar revisada y puesta a punto en un taller especializado para evitar vertidos accidentales (aceite, carburante, etc.).

Para prevenir los efectos de posibles vertidos durante la fase de explotación, y con el fin de evitar eventuales pérdidas, se realizará un mantenimiento preventivo de todos los aparatos eléctricos que contengan aceite o gases dieléctricos. En esta fase se diseñará un área de mantenimiento para la recuperación de hexafluoruro de azufre.

Los aceites usados que se generen durante la construcción y explotación tendrán la consideración de residuo peligroso y serán gestionados conforme indica la legislación vigente.

El proyecto constructivo prevé que la evacuación de aguas residuales se realice mediante una red de saneamiento situada en el edificio de control que recoja los efluentes de los aseos y lavabos del edificio consistente en un sistema depurador formado por un separador de grasas, una arqueta de registro, una fosa séptica, una arqueta para toma de muestras y un pozo filtrante.

Los transformadores y las reactancias dispondrán de un sistema de recuperación de aceite en el caso de una eventual fuga que estará unido al depósito general de recogida de aceite, uno por parque, mediante tubos normalizados al efecto. La capacidad del depósito de aceite tendrá un volumen correspondiente a la suma del dieléctrico de los transformadores y reactancias a los que sirve más la previsión de entrada de agua por lluvia.

Dentro de la subestación se proyectará un depósito de almacenamiento de los residuos que se generen durante la explotación de acuerdo al sistema de gestión medioambiental de Red Eléctrica.

- El diseño de la subestación prevé un cerramiento parcial con valla de piedra seca (tradicional mallorquina), y otra global a toda la subestación, con valla metálica de acero galvanizado reforzado de dos metros de altura. Se prevén una puerta de acceso de peatones y una para vehículos.

- Se prevé un sistema de recogida de aguas pluviales que dé continuidad a los cursos presentes en el entorno de la subestación para evitar dañar la red de drenaje existente. La red de drenaje prevista está formada por tubos conectados a colectores que evacuan las aguas hasta una arqueta general de desagües que, a su turno, se conectará hasta un pozo de gravas exterior ubicado en el límite del terreno utilizado para la subestación (dimensionado para períodos de retorno de entre 10 y 25 años).

- El proyecto constructivo contempla un alumbrado de acuerdo con la legislación aplicable en la materia (ley 3/2005, de 20 de abril, de protección del medio nocturno de las Baleares.

- Se definir y desarrollará un Programa de Vigilancia Ambiental de la subestación, de acuerdo con la legislación ambiental vigente (uno para la fase de obra y otro para la fase mantenimiento).

10.1.2 MEDIDAS PREVENTIVAS PREVENTIVAS EN LA FASE DE DISEÑO PARA LAS LÍNEAS

Además de la elección del trazado óptimo para las líneas en estudio (realizada a partir de criterios como la facilidad de acceso, la pendiente del terreno, la posible existencia de riesgos geológicos, el medio natural de la zona, la presencia de zonas naturales protegidas o de zonas habitadas...), las principales medidas preventivas adoptadas durante la fase de diseño han sido las siguientes:
- Los apoyos previstos en los tramos en aéreo serán apoyos de conversión de aéreo a subterráneo de simple circuito, metálicos, de celosía. Su cimentación será de tipo de patas separadas. R.E.E. está actualmente normalizando los apoyos a utilizar en la fase constructiva con el objetivo de adaptarse a lo dispuesto en el Real Decreto 1432/2008, de 29 de agosto, por el que se establecen medidas para la protección de la avifauna contra la colisión y la electrocución en líneas eléctricas de alta tensión.

- Los apoyos se han distribuido de forma que:
 o Su distribución y altura permite la menor incidencia posible a torrentes.
 o La zona de servidumbre hidráulica queda libre de apoyos.
 o No se entra en zona inundable.
 o Se minimiza la necesidad de apertura de nuevos accesos.
 o Se evitan las zonas restringidas por las servidumbres tales como las aeronáuticas, ferroviarias, de carreteras, viales, etc. así como las zonas de mayor interés vegetal (se prioriza la ubicación en campos de cultivos o zonas improductivas).

- Las líneas en proyecto tienen el acceso garantizado por caminos existentes o por entre los cultivos existentes, por lo que no será necesaria la apertura de nuevos accesos.

- En cuanto a la calle de seguridad de las líneas, se cumplirá estrictamente con los requerimientos establecidos por el Decreto 223/2008 de 15 de febrero, por el que se aprueba el Reglamento sobre condiciones técnicas y garantías de seguridad en líneas eléctricas de alta tensión y sus instrucciones técnicas complementarias.
 o En el caso de las líneas en aéreo se recomienda una observación sobre el terreno para comprobar la estimación realizada y recomendar, en caso necesario podas o talas selectivas.
 o Para las líneas en subterráneo se recomienda realizar una observación sobre el terreno para comprobar la bondad de la estimación de afección realizada y, en caso necesario, realizar los ajustes oportunos al trazado.

- Se recomienda que el período de realización de las obras sea durante la época en que no pueda afectar la reproducción de las aves que habitan o frecuentan la zona.

- Por otra parte, los lugares de emplazamiento de equipos, zonas de acopio, préstamos, vertederos, áreas de servicio, etc., deben ser estudiados minuciosamente y ceñirse a lo estrictamente necesario sin ocupar zonas sensibles y vulnerables ambientalmente.

10.1.3 MEDIDAS PREVENTIVAS EN LA FASE DE CONSTRUCCIÓN PARA LA SUBESTACIÓN

La mayor parte de las medidas de esta fase se centran en el cumplimiento de las medidas preventivas definidas en el proyecto (en particular en la realización de los movimientos de tierra). Entre las medidas de esta fase encontramos:

- El acondicionamiento de los terrenos se realizará de acuerdo con el proyecto de las instalaciones.
- La planificación de los trabajos se realizará considerando las servidumbres de paso existentes y proponiendo trazados alternativos llegado el caso.
- El material de acopio o el estacionamiento de la maquinaria se ubicarán en las zonas habilitadas para tal fin, preferiblemente dentro de los terrenos destinados a la ubicación de la subestación.
- Se evitará en lo posible la compactación de los suelos, limitando las zonas donde vaya a entrar maquinaria pesada.
- Se tratará de afectar la mínima superficie en el entorno de la zona de construcción de la subestación, buscando la preservación, siempre que sea viable, de la capa herbácea y subarbustiva original del suelo.

- Los materiales procedentes de la excavación se retirarán y se evitará su acumulación en el entorno de la obra.

- Se habilitará una zona para limpieza de cubas hormigoneras (que permite su posterior tratamiento adecuado) y quedará prohibido el vertido de hormigón sobrante y la limpieza de las cubas de las hormigoneras en cualquier punto de la zona que no sea el indicado a tal efecto.

- Se evitarán los vertidos de cualquier clase al suelo, en especial de aceites y de otras sustancias tóxicas que puedan manipularse, para lo cual se establecen las especificaciones medioambientales que son vinculantes para el contratista.

- Para evitar otros vertidos, se prohibirá a los contratistas la realización de cambios de aceite y otras tareas de mantenimiento fuera de las zonas habilitadas a tal efecto. Para afrontar eventuales vertidos accidentales, será obligatorio que exista material absorbente y que se recupere el suelo contaminado por cualquiera de estos casos.

- Se considerarán los restos de estas pinturas como vertido contaminante y serán tratados como tal.

- En general, como medida preventiva ante los vertidos quedará prohibido el vertido de todo tipo de sustancias al suelo o en aguas (superficiales o subterráneas), en particular aceites (se controlará que no se realicen cambios de aceites de la maquinaria, etc.) que deberán gestionarse mediante un gestor autorizado.

- Se señalará la zona de obra para limitar el área de los trabajos.

- Se procurará que las actuaciones en el entorno de la explanación de obra sean mínimas.

- Se diseñará un plan para disponer de los estériles producidos en el interior del parque de forma que se eliminen y trasladen según se vayan produciendo.

- Se utilizará maquinaria que cumpla la normativa vigente referente a emisiones atmosféricas de partículas sólidas y ruidos.

- Durante los movimientos de tierras (especialmente si se producen en época de sequía) se realizarán riegos periódicos de los viales de acceso para minimizar la producción de polvo.

- Se delimitará cuidadosamente la zona de obras con objeto de proteger la vegetación que quede fuera del ámbito de la subestación.

- En relación a la fauna, dada la existencia confirmada de la Tortuga mora (*Testudo graeca*) en la zona, se realizará una inspección ocular previa a las obras para asegurar que no se encuentre ningún ejemplar de esta especie en la parcela (trasladando los posibles ejemplares encontrados fuera de la misma). Una vez hecho esto, se procederá al vallado de la zona con malla de diámetro inferior a 3 cm para asegurar que ningún ejemplar de Tortuga mora pueda entrar en el espacio de la subestación.

- En general, se protegerá el cauce de los cursos de agua próximos a la subestación, siendo necesario aplicar las siguientes medidas:
 - Para el lavado de hormigoneras y maquinaria se habilitará un área lo suficientemente alejada de los cursos de agua dotada de una pequeña bolsa a la que irá a parar el agua sucia.
 - El parque de maquinaria se ubicará en un lugar lo suficientemente alejado de los cauces para que no puedan producirse vertidos que afecten a la red de drenaje.
 - Se evitará, en la medida de lo posible, realizar movimientos de maquinaria en épocas de fuertes lluvias.
- Es recomendable advertir de la realización de las obras a título informativo a los usuarios de la MA-1014 para prevenirlos de la presencia de maquinaria pesada.

- Se llevará a cabo un “Estudio Arqueológico Preliminar” previo al inicio de las obras de construcción de la subestación para evitar afecciones al patrimonio.

10.1.4 MEDIDAS PREVENTIVAS EN LA FASE DE CONSTRUCCIÓN PARA LAS LÍNEAS

Las principales medidas preventivas para las líneas de esta fase son:

- Será necesario el marcaje y delimitación de las zonas de actuación a lo largo de las zanjas de soterramiento y al pie de cada apoyo mediante cintas con tal de restringir el área de ocupación por parte de la maquinaria y personal de obra. En el mismo sentido, durante el montaje e izado de los apoyos en los tramos aéreos se delimitará la zona de obras.

- Cuando los apoyos de las líneas en aéreo se monten en el suelo, los apoyos deberán sustentarse con unos tacos de madera.

- Se retirará la cobertura vegetal del suelo y el horizonte orgánico del mismo y se depositará en pequeños montículos (no superiores a 2 m de altura) en zonas planas para poder recuperar las tierras y facilitar la regeneración de los espacios afectados. Durante el tiempo que el suelo permanezca en depósito deberá ser objeto de tratamientos que mantengan su estructura y fertilidad.

- En cuanto al control de inestabilidades, en general y especialmente relación al nuevo apoyo de conversión de aéreo a subterráneo de la L/66 kV Santa Ponça – Andratx, sería conveniente tener presentes las siguientes medidas:

 o Evitar el vertido incontrolado de materiales de desmonte en el sentido de la pendiente, con terraplenamiento fuera del trazado afectado.

 o Redondeo de los ángulos, evitando que se formen aristas en las cuestas y en la coronación de taludes.

 o Respetar los taludes naturales actuales, procurando reponer la morfología de éstos de forman que queden bien estabilizados y naturalizados.

- Se limitará la velocidad de circulación rodada a un máximo de 30 Km./h, y se evitará la circulación por zonas no especialmente habilitadas.

- Se recomienda que (especialmente durante los períodos secos), se realicen riegos periódicos de los accesos y explanadas de obra para minimizar la generación de polvo.

- Se evitarán los cambios de combustible y aceite o la reparación de la maquinaria pesada en la zona sin las precauciones señaladas en las especificaciones medioambientales de la obra que acompañarán al pliego de contratación de la misma.

- Se dispondrá de una plataforma estanca para el lavado de hormigoneras y maquinaria en un lugar alejado de los cursos de agua más próximos.

- Los materiales de rechazo habrán de ser transportados a un vertedero controlado por un gestor autorizado.

- Las aguas procedentes de excavaciones y las aguas residuales (si las hubiera) habrán de ser tratadas convenientemente antes de su vertido, de forma que cumplan con los estándares de calidad fijados en la normativa de aguas vigente.

- Se proponen una serie de medidas preventivas genéricas a adoptar en el caso la líneas L/66 kV Palmanova – Santa Ponça y L/66 kV Santa Ponça – Andratx en su cruce subterráneo del pequeño reguero innominado paralelo a la calle Islas Canarias:

 o El cruce se efectuará de manera perpendicular al cauce o, en su defecto, con el recorrido más corto posible, no provocando disminución de la sección hidráulica en ningún punto.
o Se dejará una distancia libre de 1 metro entre la parte superior de las canalizaciones y el lecho del cauce, que se rellenará con tierra adecuada y compactada al 95% del Proctor Modificado (70 cm.), colocando posteriormente una solera de 30 cm. de hormigón HM-20 hasta el lecho del cauce, no variando en ningún punto, la pendiente del mismo.

o Todos los elementos susceptibles de una futura actuación tales como arquetas, unión de canalizaciones, armarios, etc., se colocarán fuera de la zona de servidumbre del cauce.

o Se repondrán todos los elementos del cauce que se vieran afectados por la ejecución de las obras (soleras, muros laterales, pretiles, etc.) y al finalizar las mismas se procederá a la limpieza del tramo de cauce afectado.

- En referencia a limitar los efectos sobre la vegetación:

 Tala selectiva:

 o Las talas y desbroces de vegetación leñosa y herbácea deberán ser los mínimos indispensables según el Decreto 223/2008.

 o En general el tendido del cable guía se hará de forma manual para evitar talas innecesarias de cara al posterior funcionamiento de la línea.

 o Los restos de tala y poda (las cuales se deberán realizar con motosierra con matachispas para mantener la cubierta arbustiva y herbácea) serán retirados o triturados con la mayor brevedad posible y retiradas a vertederos.

 o En ningún caso se utilizarán herbicidas para el mantenimiento de la calle de seguridad.

 Marcaje de zonas de actuación:

 o Se limitarán las zonas de actuación sobre la vegetación mediante el marcaje de las superficies con vegetación que tengan que ser objeto de talas selectivas u otros tipos de actuaciones.

- En cuanto a la fauna, las medidas preventivas se centran en, dada la existencia confirmada de la Tortuga mora (*Testudo graeca*) en la zona, realizar una inspección ocular previa a las obras para asegurar que no se encuentre ningún ejemplar de la zona de obras (trasladando los posibles ejemplares encontrados fuera de la misma). Una vez hecho esto, se procederá al vallado de la zona con malla de diámetro inferior a 3 cm para asegurar que ningún ejemplar de Tortuga mora pueda entrar en ella.

- Se recomienda que el período de realización de las obras sea durante la época en que no pueda afectar la reproducción de las aves (desde la puesta de los huevos hasta el vuelo de los pollos).

- En relación a los apoyos de los tramos aéreos, R.E.E. está normalizando los apoyos a utilizar en la fase constructiva con el objetivo de adaptarse a lo dispuesto en el Real Decreto 1432/2008, de 29 de agosto.

- Se llevará a cabo la recogida y gestión de todos los restos de obras y residuos obtenidos durante ésta.

- En caso de apertura de nuevos accesos, explanadas de obra, etc. se deberán realizar en lugares de común acuerdo con los propietarios.

- En caso de ser necesaria la interrupción temporal de algunos servicios, debe procurarse que se trate de lo más breve posible para no perjudicar a los usuarios y consumidores.
10.2. MEDIDAS CORRECTORAS

10.2.1. MEDIDAS CORRECTORAS PARA LA SUBESTACIÓN

El tipo e intensidad de las medidas correctoras relativas a la subestación Santa Ponça vienen determinadas por tratarse de una instalación blindada interior tipo GIS, lo que reduce ostensiblemente el número y la gravedad de impactos potenciales que, a priori, se achacan a una infraestructura de este tipo. Entre las principales medidas correctoras previstas para la subestación encontramos:

- Se adaptarán las formas de los depósitos de materiales a formas acordes con la morfología del terreno.

- Se prohibirá el vertido incontrolado y acumulación de estériles de construcción, que deberán ser entregados a un gestor autorizado.

- Una vez finalizadas las obras, en las zonas donde vaya a distribuirse definitivamente la tierra vegetal o en los casos en que exista compactación de suelos por haber circulado la maquinaria, se procederá a la descompactación mediante ripado, escarificado ligero o arado en función de los daños provocados, seguido de un aporte de abono mineral, en el caso que fuera necesario dejar el terreno apto para el cultivo.

- Durante la fase de construcción se deberá limitar la contaminación atmosférica derivada del levantamiento de partículas de polvo a la atmósfera (con medidas como el riego de las zonas de la obra con movimiento de maquinaria pesada).

- Se mantendrá un orden en la disposición de los materiales existentes en la subestación para evitar la generación de impactos paisajísticos no previstos.

- Se delimitará el parque de maquinaria necesario para la construcción de la subestación, de modo que la ocupación se restringirá al espacio mínimo necesario para infraestructura.

- Dadas las medidas preventivas y de supervisión de la obra adoptadas a este efecto (especialmente en relación a la presencia de Tortuga mora (Testudo graeca) en la zona), no se consideran necesarias medidas correctoras específicas.

- Se ha elaborado un Estudio de Incidencia Paisajística que valora el impacto de la implantación de la subestación y establece una serie de medidas encaminadas a favorecer una mayor integración visual de la misma en su entorno inmediato.

- Se señalará adecuadamente la salida de camiones de las obras, el inicio de las obras y el plazo de ejecución.

- Dentro del proyecto de construcción se considerará la reposición de todo tipo de servicios afectados. Se deberá procurar no interferir en estos servicios, sobretodo durante la ejecución de las obras, en momentos de excavación de zanjas o realización de cimientos.

- Se procurará la limpieza de polvo y barro del acceso al emplazamiento de la subestación para no ensuciar la carretera MA-1014 y evitar poner en riesgo la seguridad de sus usuarios.

- Las medidas correctoras referentes al patrimonio, en caso de que sean necesarias a partir del hallazgo de restos o yacimientos patrimoniales no inventariados, serán las que establezca la Dirección General de cultura de la Consellería de Educación y Cultura del Govern de les Illes Balears.

- Con antelación a la puesta en servicio de la subestación se procederá, a través del Programa de Vigilancia Ambiental, a la revisión de todos aquellos componentes de la misma que puedan tener repercusiones sobre los elementos del medio para revisar la idoneidad de las soluciones definidas y los resultados obtenidos.
Los contratistas quedan obligados a la rehabilitación de todos los daños ocasionados sobre las propiedades durante la ejecución de los trabajos (siempre y cuando les sean imputables). Para ello, los propios contratistas deberán proceder a la recuperación del daño o, de común acuerdo con los propietarios afectados, estipular las indemnizaciones correspondientes.

10.2.2 MEDIDAS CORRECTORAS PARA LAS LÍNEAS

Cabe recordar que, salvo unos pocos metros en aéreo de los trazados correspondiente a las líneas L/66 kV Santa Ponça – Andratx y L/66 kV Santa Ponça – Sant Agustí, el resto de líneas en proyecto se realiza íntegramente en subterráneo de manera que la necesidad de medidas correctoras se ve ostensiblemente reducida al no producirse gran parte de los impactos que habitualmente se imputan a las líneas eléctricas aéreas, incidiendo éstas en factores a los que los trazados subterráneos de líneas eléctricas no afectan. Entre las medidas correctoras previstas para las líneas encontramos:

- Acotar el área de afección, mantener la topografía llana actual lo largo del trazado de las líneas en subterráneo.
- En el caso de producirse taludes, se controlará la aparición de cárcavas o de otros procesos erosivos con el fin de desarrollar por adelantado (o diseñar, llegado el caso) las medidas correctoras precisas.
- En cuanto a las explanadas de obras, se deberán restaurar con el fin de restablecer su estado inicial previo a los trabajos de instalación de las líneas.
- Se restituirán las condiciones de transitabilidad y vialidad de todos los accesos y viales implicados (allá donde se hayan visto afectados).
- Dadas las medidas preventivas y de supervisión de la obra adoptadas a este efecto (especialmente en relación a la presencia de Tortuga mora (Testudo graeca) en la zona) que se han descrito anteriormente, no se consideran necesarias medidas correctoras específicas.
- El Estudio de Incidencia Paisajística recoge las medidas preventivas y correctoras destinadas a minimizar aquellos impactos de tipo paisajístico que pudieran producirse con motivo de la ejecución del proyecto.
- Otras medidas previstas son la realización de un programa de vigilancia ambiental que vele por el cumplimiento de todas las medidas correctoras y previstas propuestas.
- Antes de la ejecución de las obras se informará a la dirección de la obra de los pormenores detallados en las especificaciones medioambientales de la obra que debe conocer pues la oferta habrá sido realizada atendiendo a todas las medidas preventivas y correctoras aquí expuestas.

10.3 MEDIDAS PREVENTIVAS Y CORRECTORAS EN LA EXPLOTACIÓN

Durante esta fase no se desarrollan apenas medidas nuevas propiamente dichas, ya que al ser la explotación de tipo estático no se provocan impactos nuevos, manteniéndose exclusivamente aquellos que poseen carácter residual, como es la presencia misma de la subestación o de los apoyos de la línea eléctrica aérea.

En el caso que se promulguen nuevas disposiciones normativas en virtud de las cuales se deban considerar nuevas afecciones potenciales para las subestaciones y las líneas eléctricas, se adoptarán las pertinentes medidas correctoras.

Las instalaciones en funcionamiento se incluyen en el Sistema de Gestión Medioambiental de Red Eléctrica.
11. IMPACTOS RESIDUALES Y VALORACIÓN GLOBAL

11.1. IMPACTOS RESIDUALES

<table>
<thead>
<tr>
<th>FASE DE CONSTRUCCIÓN</th>
<th>FASE DE OPERACIÓN Y MANTENIMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subestación</td>
</tr>
<tr>
<td>Aumento de los procesos erosivos</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Modificación de la morfología</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Ocupación irreversible del suelo</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Alteración de las características físicas del suelo</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Contaminación de los suelos</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Afección a la hidrología superficial</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Afección a la hidrología subterránea</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Cambios en la calidad de las aguas</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Alteración puntual de las condiciones de drenaje</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Incremento de polvo / partículas en suspensión</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Contaminación acústica</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Escapes accidentales de hexafluoruro de azufre (SF₆)</td>
<td>NO SE PREVÉ</td>
</tr>
<tr>
<td>Perturbaciones provocadas por C.E.M.</td>
<td>NO SE PREVÉ</td>
</tr>
<tr>
<td>Eliminación de la vegetación</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Molestias a la fauna y afectación de sus hábitats</td>
<td>MODERADO</td>
</tr>
<tr>
<td>Aumento del riesgo de colisión para la avifauna</td>
<td>NO SE PREVÉ</td>
</tr>
<tr>
<td>Afección sobre la propiedad</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Pérdida de uso del suelo</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Variación de las condiciones de circulación</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Afección a infraestructuras y servicios</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Generación de empleo</td>
<td>POSITIVO</td>
</tr>
<tr>
<td>Mejora de las infraestructuras y servicios</td>
<td>NO SE PREVÉ</td>
</tr>
<tr>
<td>Impactos sobre el patrimonio</td>
<td>COMPATIBLE</td>
</tr>
<tr>
<td>Impacto sobre el paisaje</td>
<td>COMPATIBLE</td>
</tr>
</tbody>
</table>
11.2. IMPACTO GLOBAL

Los impactos globales que, a medio plazo, generará el proyecto de la subestación a 220/132/66 kV Santa Ponça y líneas eléctricas asociadas (L/66 kV Palmanova – Santa Ponça, L/220 kV Santa Ponça– Santa Ponça E.C., L/220 kV Valldurgent – Santa Ponça, L/66 kV Calvià – Santa Ponça, L/66 kV Santa Ponça– Andratx y L/66 kV Santa Ponça– Sant Agustí) se resumen como sigue:

- Fase de construcción
 - Impacto global de la subestación: COMPATIBLE.
 - Impacto global de las líneas eléctricas: COMPATIBLE.

- Fase de operación y mantenimiento
 - Impacto global de la subestación: COMPATIBLE.
 - Impacto global de las líneas eléctricas: COMPATIBLE.

El impacto conjunto global se clasifica como COMPATIBLE para las fases de construcción, operación y mantenimiento.

No existen impactos residuales severos ni críticos tras aplicar las medidas preventivas y correctoras indicadas en el capítulo 9 del presente Estudio de Impacto Ambiental, así como las especificaciones medioambientales que son de carácter contractual con el contratista.
11. PROPUESTA DE REDACCIÓN DE UN PROGRAMA DE VIGILANCIA AMBIENTAL (P.V.A.)

La redacción de un Programa de Vigilancia Ambiental (P.V.A.) tiene como función básica establecer un sistema que garantice el cumplimiento de las medidas preventivas y correctoras, tanto las contenidas en el estudio de impacto ambiental como las que vayan apareciendo a lo largo del procedimiento de información pública del proyecto de la subestación y de las líneas de entrada y salida.

El cumplimiento del P.V.A. se considera fundamental, dado que en este tipo de obras es habitual que se trabaje en diversas zonas a un mismo tiempo y por equipos y empresas contratistas distintas, cada una de las cuales puede asumir con un rigor diferente las condiciones que se establezcan en las especificaciones medioambientales para la obra acordes al sistema de gestión medioambiental de Red Eléctrica para la protección del medio ambiente.

Se conoce que la falta de inspección ambiental incrementa la probabilidad de que aumenten los impactos ambientales, teniendo en cuenta que la mayor parte de las actuaciones tendentes a minimizarlos son de tipo preventivo, debiéndolas asumir esencialmente quien está ejecutando los trabajos.

El objetivo del P.V.A. consiste en definir el modo de seguimiento de las actuaciones y describir el tipo de informes, su frecuencia y su período de emisión.

El P.V.A. no se define de forma secuencial, debiendo interpretarse como una asistencia técnica durante las fases (construcción, operación y mantenimiento) que faltan por acometer en la implantación de la subestación y de las líneas de tal manera que se consiga, en la medida de lo posible, evitar o subsanar los problemas que pudieran aparecer tanto en aspectos ambientales generales, como en la aplicación de las medidas correctoras.

El P.V.A. tendrá, además, otras funciones adicionales:

- Permitir el control de la magnitud de ciertos impactos cuya predicción resulta difícil de realizar durante la fase de proyecto, así como articular nuevas medidas correctoras, en el caso de que las ya aplicadas no sean suficientes.
- Constituir una fuente de datos importante para, en función de los resultados obtenidos, poder modificar o actualizar los postulados previos de identificación de impactos para mejorar el contenido de futuros estudios de impacto ambiental de líneas y subestaciones eléctricas.
- Permitir la detección de impactos que, en un principio, no se hayan previsto, pudiendo introducir a tiempo las medidas correctoras que permitan paliarlos.

El P.V.A. se divide en dos fases: construcción, por un lado, y operación y mantenimiento, por otro.

11.1. PROPUESTA DE P.V.A. EN LA FASE DE CONSTRUCCIÓN

Se proponen varias medidas como:

- Celebrar reuniones periódicas de seguimiento en las que participen los responsables de la obra, y donde se les entreguen las especificaciones ambientales (obligatorias contractualmente,) que incluirán las medidas preventivas y correctoras de la obra. Asimismo, se establecerán aspectos relacionados con el diseño y la construcción de los caminos de acceso.
- Realizar un control permanente de las obras en el que participen la empresa concesionaria de las obras (a través de sus encargados) y los Servicios de vigilancia de Red Eléctrica.

- Controles periódicos realizados por el Departamento de Medio Ambiente de Red Eléctrica para constatar el desarrollo correcto de los trabajos, los posibles impactos generados, y proceder inmediatamente a su corrección.

- Revisión completa y exhaustiva de la subestación y de las líneas eléctricas, llevando a cabo las medidas adecuadas para la corrección de los impactos residuales, antes de la finalización de las obras.

En la fase de construcción, el P.V.A. realizará, al menos, las siguientes actuaciones:

- Control sobre las empresas contratistas.
- Obtención de permisos previos a la construcción.
- Control sobre los daños efectuados en los predios.
- Control en el diseño de los caminos de acceso (en caso que sea necesario).
- Control en el acopio de materiales.
- Control en la excavación de las cimentaciones.
- Control en el armado e izado de apoyos.
- Control de posibles vertidos o actividades que pudieran derivar en la contaminación del suelo.
- Control de los residuos generados durante la obra.
- Control del restablecimiento de las condiciones originales cuando así sea requerido por el propietario o el agente de medio ambiente o el personal de Red de Eléctrica para el caso de accesos a apoyos u otras actividades derivadas de la ejecución del proyecto.
- Protección de la vegetación.
- Protección de la fauna.
- Control del patrimonio.

A continuación se describe brevemente cada una de estas actuaciones.

11.2. PROPUESTA DE P.V.A. EN LA FASE DE OPERACIÓN Y MANTENIMIENTO

Se redactará un P.V.A. para la fase de operación y mantenimiento. La realización del seguimiento durante esta fase se considera importante, ya que:

- Es el período en el cual se pueden cuantificar adecuadamente los impactos provocados por la obra tras la aplicación de las medidas correctoras (impactos residuales).
- Permitirá detectar las afecciones no previstas inicialmente.
- Permitirá velar por el cumplimiento de los aspectos que señale la D.I.A. para la ejecución del proyecto.

Como resultado de esta fase de seguimiento, de ser necesarias se adoptarán las medidas correctoras complementarias que sirvan para minimizar definitivamente los impactos ambientales que se detecten.
11.3. MODO DE SEGUIMIENTO DE LAS ACTUACIONES

Se realizará un primer informe con anterioridad al inicio de las obras, el cual contendrá una propuesta de P.V.A. durante la fase de construcción y la designación de los responsables de la ejecución del P.V.A.

Tras los primeros meses de construcción, se redactará otro informe que contendrá los siguientes apartados:

- Aspectos ambientales supervisados en la construcción e izado de los apoyos, apertura de zanjas, tendido de conductores y habilitación de caminos de acceso (en caso de ser necesarios). Se hará una mención pormenorizada de los trabajos medioambientales efectuados.
- Control de los cambios de aceite de la maquinaria.
- Justificantes de vertido al vertedero de los excedentes y residuos de la obra, así como el justificante de entrega al gestor autorizado de los residuos peligrosos.
- Control y seguimiento de las operaciones de tala y poda puntuales, si fuera necesario.

Se redactará, una vez finalizada la construcción, un último informe que contendrá las especificaciones técnicas para la operación y mantenimiento de las instalaciones y los aspectos ambientales supervisados en la construcción e izado de los apoyos, apertura de zanjas, tendido de cables y construcción de accesos.

Durante la fase de operación y mantenimiento, se redactará un informe tras el primer año en funcionamiento, en el que se recogerán las revisiones y la eficacia de las medidas correctoras llevadas a cabo.
12. CONCLUSIONES

- Las instalaciones previstas son fundamentales para asegurar la calidad del suministro de la demanda del sistema. Contribuyen notablemente al mallado de la red de transporte obteniéndose una mayor fiabilidad y calidad en el suministro de la demanda especialmente en las zonas que mallan.

- Las infraestructuras previstas harán de la futura S.E. Santa Ponça la nueva subestación de referencia para la alimentación al mercado de la zona suroeste de la isla de Mallorca (sustituyendo de esta manera a la actual S.E. Calvià 66 kV), siendo fundamental para garantizar el transporte de electricidad de la zona, asegurando la calidad del suministro energético para poder hacer frente a la demanda de energía eléctrica en la región. Además la S.E. Santa Ponça constituirá el nudo de interconexión de las infraestructuras eléctricas proyectadas entre la Península y las Islas así como entre Mallorca y Eivissa. Estas futuras interconexiones constituirán un sistema conjunto de mallado que otorgará estabilidad al sistema y permitirá optimizar los costes de generación y distribución.

- El emplazamiento seleccionado para la subestación corresponde a la parcela determinada en el Plan Director Sectorial Energético. El trazado de las líneas minimiza el impacto sobre el medio biológico, físico, social y el paisaje. A tal efecto, la mayor parte del recorrido de las líneas se ha diseñado en subterráneo siguiendo calles y viales existentes, siempre con criterio de elección de la alternativa de menor impacto.

- La valoración global del Estudio de Impacto Ambiental del proyecto en estudio, tras la aplicación de las medidas preventivas y correctoras previstas, es de COMPATIBLE.
13. EQUIPO REDACTOR

El equipo de trabajo se ha compuesto por los profesionales siguientes:

<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>TITULACIÓN</th>
<th>FIRMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Josep Rocas Roig</td>
<td>Ingeniero Agrónomo</td>
<td></td>
</tr>
<tr>
<td>Quima Calvo Fontàs</td>
<td>Licenciada en Geología</td>
<td></td>
</tr>
<tr>
<td>Raquel Bosch Jiménez</td>
<td>Licenciada en Geografía</td>
<td></td>
</tr>
<tr>
<td>Cristina Pérez Butrón</td>
<td>Ingeniera de Montes</td>
<td></td>
</tr>
<tr>
<td>Albert Cebrià Masferrer</td>
<td>Licenciado en Ciencias Ambientales</td>
<td></td>
</tr>
</tbody>
</table>

Planos

1) Alternativas sobre síntesis ambiental
2) Alternativa de menor impacto sobre síntesis ambiental
3) Impactos residuales y medidas preventivas